{"title":"经皮雌二醇负载PLGA-PEG-PLGA纳米颗粒治疗骨质疏松症的实用性","authors":"Ryuse Sakurai , Issei Takeuchi , Kimiko Makino , Fumio Itoh , Akiyoshi Saitoh","doi":"10.1016/j.rinma.2024.100577","DOIUrl":null,"url":null,"abstract":"<div><p>Compared with poly (<span>dl</span>-lactide-<em>co</em>-glycolide) (PLGA) nanoparticles, triblock copolymer (PLGA-PEG-PLGA) nanoparticles composed of PLGA and polyethylene glycol (PEG) may improve the skin permeability of drugs. In this study, the usefulness of estradiol-loaded (E2-loaded) PLGA-PEG-PLGA nanoparticles in the treatment of osteoporosis was investigated by comparison with E2-loaded PLGA nanoparticles. The cumulative E2 permeation of each nanoparticle through rat skin was quantified using a Franz cell. The results showed that PLGA-PEG-PLGA nanoparticles had significantly higher permeation than PLGA nanoparticles. Next, <em>in vivo</em> treatment experiments were conducted using an ovariectomized rat model of osteoporosis. Nanoparticles were administered once per week in combination with iontophoresis. At 6 weeks after the initiation of treatment, significant improvement in bone density was observed in the treated group compared with the untreated group. The improvement in bone density tended to be greater in the PLGA-PEG-PLGA nanoparticle group versus the PLGA nanoparticle group. This may be attributed to the higher hydrophilicity of the particle surface of PLGA-PEG-PLGA nanoparticles compared with PLGA nanoparticles and the improved skin permeability of the particles through the <em>trans</em>-adnexal pathway.</p></div>","PeriodicalId":101087,"journal":{"name":"Results in Materials","volume":"22 ","pages":"Article 100577"},"PeriodicalIF":0.0000,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590048X24000517/pdfft?md5=789512fa3486ad41674c3bed708338ea&pid=1-s2.0-S2590048X24000517-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Usefulness of percutaneous estradiol-loaded PLGA-PEG-PLGA nanoparticles for the treatment of osteoporosis\",\"authors\":\"Ryuse Sakurai , Issei Takeuchi , Kimiko Makino , Fumio Itoh , Akiyoshi Saitoh\",\"doi\":\"10.1016/j.rinma.2024.100577\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Compared with poly (<span>dl</span>-lactide-<em>co</em>-glycolide) (PLGA) nanoparticles, triblock copolymer (PLGA-PEG-PLGA) nanoparticles composed of PLGA and polyethylene glycol (PEG) may improve the skin permeability of drugs. In this study, the usefulness of estradiol-loaded (E2-loaded) PLGA-PEG-PLGA nanoparticles in the treatment of osteoporosis was investigated by comparison with E2-loaded PLGA nanoparticles. The cumulative E2 permeation of each nanoparticle through rat skin was quantified using a Franz cell. The results showed that PLGA-PEG-PLGA nanoparticles had significantly higher permeation than PLGA nanoparticles. Next, <em>in vivo</em> treatment experiments were conducted using an ovariectomized rat model of osteoporosis. Nanoparticles were administered once per week in combination with iontophoresis. At 6 weeks after the initiation of treatment, significant improvement in bone density was observed in the treated group compared with the untreated group. The improvement in bone density tended to be greater in the PLGA-PEG-PLGA nanoparticle group versus the PLGA nanoparticle group. This may be attributed to the higher hydrophilicity of the particle surface of PLGA-PEG-PLGA nanoparticles compared with PLGA nanoparticles and the improved skin permeability of the particles through the <em>trans</em>-adnexal pathway.</p></div>\",\"PeriodicalId\":101087,\"journal\":{\"name\":\"Results in Materials\",\"volume\":\"22 \",\"pages\":\"Article 100577\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2590048X24000517/pdfft?md5=789512fa3486ad41674c3bed708338ea&pid=1-s2.0-S2590048X24000517-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Results in Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590048X24000517\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590048X24000517","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Usefulness of percutaneous estradiol-loaded PLGA-PEG-PLGA nanoparticles for the treatment of osteoporosis
Compared with poly (dl-lactide-co-glycolide) (PLGA) nanoparticles, triblock copolymer (PLGA-PEG-PLGA) nanoparticles composed of PLGA and polyethylene glycol (PEG) may improve the skin permeability of drugs. In this study, the usefulness of estradiol-loaded (E2-loaded) PLGA-PEG-PLGA nanoparticles in the treatment of osteoporosis was investigated by comparison with E2-loaded PLGA nanoparticles. The cumulative E2 permeation of each nanoparticle through rat skin was quantified using a Franz cell. The results showed that PLGA-PEG-PLGA nanoparticles had significantly higher permeation than PLGA nanoparticles. Next, in vivo treatment experiments were conducted using an ovariectomized rat model of osteoporosis. Nanoparticles were administered once per week in combination with iontophoresis. At 6 weeks after the initiation of treatment, significant improvement in bone density was observed in the treated group compared with the untreated group. The improvement in bone density tended to be greater in the PLGA-PEG-PLGA nanoparticle group versus the PLGA nanoparticle group. This may be attributed to the higher hydrophilicity of the particle surface of PLGA-PEG-PLGA nanoparticles compared with PLGA nanoparticles and the improved skin permeability of the particles through the trans-adnexal pathway.