将 MoS2/碳量子点双复合材料融入高性能聚吡咯基体的优势超级电容器实现了前所未有的效率,实现了能源转换

Energy Storage Pub Date : 2024-05-14 DOI:10.1002/est2.632
Rajat Arora, Monika Dhanda, Meena Yadav, Priti Pahuja, Simran Ahlawat, Neeru Jhanjhariya, S. P. Nehra, Suman Lata
{"title":"将 MoS2/碳量子点双复合材料融入高性能聚吡咯基体的优势超级电容器实现了前所未有的效率,实现了能源转换","authors":"Rajat Arora,&nbsp;Monika Dhanda,&nbsp;Meena Yadav,&nbsp;Priti Pahuja,&nbsp;Simran Ahlawat,&nbsp;Neeru Jhanjhariya,&nbsp;S. P. Nehra,&nbsp;Suman Lata","doi":"10.1002/est2.632","DOIUrl":null,"url":null,"abstract":"<p>For the first time, a simple one-step in situ chemical polymerization technique is used to create a novel molybdenum disulphide/sulphonated carbon quantum dots (CQDs) and polypyrrole (MCP) nanocomposite that is extended for successful use in charge storage supercapacitor (SC) device. By inheriting qualities of excellent electrical conductivity of MoS<sub>2</sub>, CQDs and improved pseudocapacitive activity of polypyrrole (PPy), the MCP nanocomposite provides a suitable SC electrode material. 0.6 MCP nanocomposited three-electrode system demonstrates 93.21% retention after 5000 cycles, and a maximum specific capacity of 2253 F/g at 2 mV/s with higher side of energy density as 106.06 Wh/kg along with a considerable power density as 180.28 W/kg. Using MCP as anode and an AC or activated charcoal electrode as cathode, a solid-state asymmetric supercapacitor (ASC) was constructed. The fabricated device supplies a greater value of specific capacitance as 154.09 F/g at 100 mV/s and 175 F/g at 0.1 A/g, also evidenced superior energy density data as 126 Wh/kg along with an appreciable power density of 604.8 W/kg. After charging the ASC for 2 min, the light emitting diode shone for 5 min. The findings underpin that MCP is a potential electrode material that could be utilized as a better alternative in futuristic supercapacitor devices.</p>","PeriodicalId":11765,"journal":{"name":"Energy Storage","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transfiguring energy with an advantageous supercapacitor integrating MoS2/carbon quantum dots bi-composites into a high-performance polypyrrole matrix for unprecedented efficiency\",\"authors\":\"Rajat Arora,&nbsp;Monika Dhanda,&nbsp;Meena Yadav,&nbsp;Priti Pahuja,&nbsp;Simran Ahlawat,&nbsp;Neeru Jhanjhariya,&nbsp;S. P. Nehra,&nbsp;Suman Lata\",\"doi\":\"10.1002/est2.632\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>For the first time, a simple one-step in situ chemical polymerization technique is used to create a novel molybdenum disulphide/sulphonated carbon quantum dots (CQDs) and polypyrrole (MCP) nanocomposite that is extended for successful use in charge storage supercapacitor (SC) device. By inheriting qualities of excellent electrical conductivity of MoS<sub>2</sub>, CQDs and improved pseudocapacitive activity of polypyrrole (PPy), the MCP nanocomposite provides a suitable SC electrode material. 0.6 MCP nanocomposited three-electrode system demonstrates 93.21% retention after 5000 cycles, and a maximum specific capacity of 2253 F/g at 2 mV/s with higher side of energy density as 106.06 Wh/kg along with a considerable power density as 180.28 W/kg. Using MCP as anode and an AC or activated charcoal electrode as cathode, a solid-state asymmetric supercapacitor (ASC) was constructed. The fabricated device supplies a greater value of specific capacitance as 154.09 F/g at 100 mV/s and 175 F/g at 0.1 A/g, also evidenced superior energy density data as 126 Wh/kg along with an appreciable power density of 604.8 W/kg. After charging the ASC for 2 min, the light emitting diode shone for 5 min. The findings underpin that MCP is a potential electrode material that could be utilized as a better alternative in futuristic supercapacitor devices.</p>\",\"PeriodicalId\":11765,\"journal\":{\"name\":\"Energy Storage\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy Storage\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/est2.632\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Storage","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/est2.632","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

该研究首次采用简单的一步原位化学聚合技术制备出新型二硫化钼/磺化碳量子点(CQDs)和聚吡咯(MCP)纳米复合材料,并将其成功应用于电荷存储超级电容器(SC)装置。MCP 纳米复合材料继承了 MoS2 和 CQDs 的优异导电性以及聚吡咯(PPy)的更高伪电容活性,是一种合适的超级电容器电极材料。0.6 MCP 纳米复合三电极系统在 5000 次循环后显示出 93.21% 的保持率,在 2 mV/s 电压下的最大比容量为 2253 F/g,能量密度高达 106.06 Wh/kg,功率密度高达 180.28 W/kg。利用 MCP 作为阳极,交流电或活性炭电极作为阴极,构建了固态非对称超级电容器(ASC)。所制造的装置在 100 mV/s 和 0.1 A/g 条件下分别提供了 154.09 F/g 和 175 F/g 的较大比电容值,还提供了 126 Wh/kg 的卓越能量密度数据和 604.8 W/kg 的可观功率密度。ASC 充电 2 分钟后,发光二极管发光 5 分钟。研究结果表明,MCP 是一种潜在的电极材料,可作为未来超级电容器设备的一种更好的替代材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Transfiguring energy with an advantageous supercapacitor integrating MoS2/carbon quantum dots bi-composites into a high-performance polypyrrole matrix for unprecedented efficiency

For the first time, a simple one-step in situ chemical polymerization technique is used to create a novel molybdenum disulphide/sulphonated carbon quantum dots (CQDs) and polypyrrole (MCP) nanocomposite that is extended for successful use in charge storage supercapacitor (SC) device. By inheriting qualities of excellent electrical conductivity of MoS2, CQDs and improved pseudocapacitive activity of polypyrrole (PPy), the MCP nanocomposite provides a suitable SC electrode material. 0.6 MCP nanocomposited three-electrode system demonstrates 93.21% retention after 5000 cycles, and a maximum specific capacity of 2253 F/g at 2 mV/s with higher side of energy density as 106.06 Wh/kg along with a considerable power density as 180.28 W/kg. Using MCP as anode and an AC or activated charcoal electrode as cathode, a solid-state asymmetric supercapacitor (ASC) was constructed. The fabricated device supplies a greater value of specific capacitance as 154.09 F/g at 100 mV/s and 175 F/g at 0.1 A/g, also evidenced superior energy density data as 126 Wh/kg along with an appreciable power density of 604.8 W/kg. After charging the ASC for 2 min, the light emitting diode shone for 5 min. The findings underpin that MCP is a potential electrode material that could be utilized as a better alternative in futuristic supercapacitor devices.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.90
自引率
0.00%
发文量
0
期刊最新文献
An Innovative Energy Storage System Based on Phase Change Material and Solar Energy Integrated With an Air Handling Unit to Produce Heating and Cooling Performance Analysis of a Renewable-Powered Multi-Gas Floating Storage and Regasification Facility for Ammonia Vessels With Reconversion to Hydrogen The Solid-State Battery Applicational Technology: Material Characteristics and Charge–Discharge Mechanisms of Iron Chloride Electrodes Hydrogen Storage Studies of Nanocomposites Derived From O-Ethyl-S-((5-Methoxy-1H-Benzo[d]Imidazol-2-Yl)Carbonothioate (OESMBIC) With ZnO and TiO2 Nanoparticles Performance Enhancement of Solar Still Couples With Solar Water Heater by Using Different PCM's and Nanoparticle Combinations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1