论最新色彩感知数学模型的哲学观点

IF 0.9 4区 哲学 Q2 HISTORY & PHILOSOPHY OF SCIENCE Foundations of Science Pub Date : 2024-05-14 DOI:10.1007/s10699-024-09951-2
Filippo Pelucchi, Michel Berthier, Edoardo Provenzi
{"title":"论最新色彩感知数学模型的哲学观点","authors":"Filippo Pelucchi, Michel Berthier, Edoardo Provenzi","doi":"10.1007/s10699-024-09951-2","DOIUrl":null,"url":null,"abstract":"<p>The problem of explaining color perception has fascinated painters, philosophers and scientists throughout the history. In many cases, the ideas and discoveries about color perception in one of these categories influenced the others, thus resulting in one of the most remarkable cross-fertilization of human thought. At the end of the nineteenth century, two models stood out as the most convincing ones: Young-Helmholtz’s trichromacy on one side, and Hering’s opponency on the other side. The former was mainly supported by painters and scientists, although with some noticeable exceptions as, e.g., Otto Runge, while the majority of philosophers supported the latter. These two apparently incompatible models were proven to be two complementary parts of the hugely complex chain of events which leads to human color perception. Recently, a rigorous mathematical theory able to incorporate both trichromacy and opponency has been developed thanks to the use of the language and tools of quantum information. In this paper, we discuss the placement of this model within the philosophical theories about color.</p>","PeriodicalId":55146,"journal":{"name":"Foundations of Science","volume":"74 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Philosophical Standpoint of a Recent Mathematical Color Perception Model\",\"authors\":\"Filippo Pelucchi, Michel Berthier, Edoardo Provenzi\",\"doi\":\"10.1007/s10699-024-09951-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The problem of explaining color perception has fascinated painters, philosophers and scientists throughout the history. In many cases, the ideas and discoveries about color perception in one of these categories influenced the others, thus resulting in one of the most remarkable cross-fertilization of human thought. At the end of the nineteenth century, two models stood out as the most convincing ones: Young-Helmholtz’s trichromacy on one side, and Hering’s opponency on the other side. The former was mainly supported by painters and scientists, although with some noticeable exceptions as, e.g., Otto Runge, while the majority of philosophers supported the latter. These two apparently incompatible models were proven to be two complementary parts of the hugely complex chain of events which leads to human color perception. Recently, a rigorous mathematical theory able to incorporate both trichromacy and opponency has been developed thanks to the use of the language and tools of quantum information. In this paper, we discuss the placement of this model within the philosophical theories about color.</p>\",\"PeriodicalId\":55146,\"journal\":{\"name\":\"Foundations of Science\",\"volume\":\"74 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Foundations of Science\",\"FirstCategoryId\":\"98\",\"ListUrlMain\":\"https://doi.org/10.1007/s10699-024-09951-2\",\"RegionNum\":4,\"RegionCategory\":\"哲学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"HISTORY & PHILOSOPHY OF SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foundations of Science","FirstCategoryId":"98","ListUrlMain":"https://doi.org/10.1007/s10699-024-09951-2","RegionNum":4,"RegionCategory":"哲学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"HISTORY & PHILOSOPHY OF SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

历史上,解释色彩感知的问题一直困扰着画家、哲学家和科学家。在许多情况下,其中一个领域关于色彩感知的观点和发现影响了其他领域,从而形成了人类思想最显著的交叉融合。十九世纪末,有两种模式最令人信服:一种是 Young-Helmholtz 的三色法,另一种是 Hering 的对立法。前者主要得到画家和科学家的支持,但也有一些明显的例外,如奥托-伦格(Otto Runge),而大多数哲学家则支持后者。这两种看似互不相容的模式被证明是导致人类色彩感知的极其复杂的事件链中的两个互补部分。最近,由于量子信息语言和工具的应用,一种能够同时包含三色性和对立性的严谨数学理论得以发展。在本文中,我们将讨论这一模型在色彩哲学理论中的位置。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
On the Philosophical Standpoint of a Recent Mathematical Color Perception Model

The problem of explaining color perception has fascinated painters, philosophers and scientists throughout the history. In many cases, the ideas and discoveries about color perception in one of these categories influenced the others, thus resulting in one of the most remarkable cross-fertilization of human thought. At the end of the nineteenth century, two models stood out as the most convincing ones: Young-Helmholtz’s trichromacy on one side, and Hering’s opponency on the other side. The former was mainly supported by painters and scientists, although with some noticeable exceptions as, e.g., Otto Runge, while the majority of philosophers supported the latter. These two apparently incompatible models were proven to be two complementary parts of the hugely complex chain of events which leads to human color perception. Recently, a rigorous mathematical theory able to incorporate both trichromacy and opponency has been developed thanks to the use of the language and tools of quantum information. In this paper, we discuss the placement of this model within the philosophical theories about color.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Foundations of Science
Foundations of Science HISTORY & PHILOSOPHY OF SCIENCE-
CiteScore
2.60
自引率
11.10%
发文量
51
期刊介绍: Foundations of Science focuses on methodological and philosophical topics of foundational significance concerning the structure and the growth of science. It serves as a forum for exchange of views and ideas among working scientists and theorists of science and it seeks to promote interdisciplinary cooperation. Since the various scientific disciplines have become so specialized and inaccessible to workers in different areas of science, one of the goals of the journal is to present the foundational issues of science in a way that is free from unnecessary technicalities yet faithful to the scientific content. The aim of the journal is not simply to identify and highlight foundational issues and problems, but to suggest constructive solutions to the problems. The editors of the journal admit that various sciences have approaches and methods that are peculiar to those individual sciences. However, they hold the view that important truths can be discovered about and by the sciences and that truths transcend cultural and political contexts. Although properly conducted historical and sociological inquiries can explain some aspects of the scientific enterprise, the editors believe that the central foundational questions of contemporary science can be posed and answered without recourse to sociological or historical methods.
期刊最新文献
Form and Information in Biology—An Evolutionary Perspective Model Organism Databases and Algorithms: A Computing Mechanism for Cross-species Research About the Concept of Molecular Structure Understanding the Interaction Between the Divergence of Science and the Convergence of Technology Based on Polanyi’s Thoughts on Science Between Understanding and Control: Science as a Cultural Product
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1