Qiao Wang, Yiqing Wang, Xintong Lu, Yang Chen, Yan Chen, Xiuwen Wu, Gongke Zhou, Guohua Chai
{"title":"成材组织特异性表达 PaTyDC4 可促进杨树木质部分化和木质素沉积,并赋予其抗旱能力","authors":"Qiao Wang, Yiqing Wang, Xintong Lu, Yang Chen, Yan Chen, Xiuwen Wu, Gongke Zhou, Guohua Chai","doi":"10.1016/j.hpj.2023.09.007","DOIUrl":null,"url":null,"abstract":"Tyrosine decarboxylase (TyDC) converts tyrosine to tyramine and plays a crucial role in secondary metabolite reactions, development, and stress responses in plants. Currently, the biological role of TyDC proteins from trees is unknown. This study provided evidence showing that poplar functions in wood development and drought stress response. is preferentially expressed in wood-forming cells in stems. Overexpression of in poplars under the control of a xylem-specific promoter resulted in an increase in the ratio of xylem to phloem width, vessel cell area, and lignin accumulation in the stems. Biochemical assays revealed that PaTyDC4 is a component of the PaC3H17-PaMYB199 module-mediated pathway. In poplar stems, expression was directly suppressed by PaMYB199, which was attenuated by the interaction between PaC3H17 and PaMYB199. In addition, overexpression lines showed stronger drought tolerance than the wild-type lines, with higher photosynthetic capacity and lower levels of HO. These results indicate that PaTyDC4 promotes xylem differentiation and lignin deposition during secondary growth and confers drought tolerance. Our findings may be useful for the genetic modification of biomass and drought resistance in trees.","PeriodicalId":13178,"journal":{"name":"Horticultural Plant Journal","volume":"33 1","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Wood forming tissue-specific expression of PaTyDC4 promotes xylem differentiation and lignin deposition during secondary growth and confers drought tolerance in Populus\",\"authors\":\"Qiao Wang, Yiqing Wang, Xintong Lu, Yang Chen, Yan Chen, Xiuwen Wu, Gongke Zhou, Guohua Chai\",\"doi\":\"10.1016/j.hpj.2023.09.007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Tyrosine decarboxylase (TyDC) converts tyrosine to tyramine and plays a crucial role in secondary metabolite reactions, development, and stress responses in plants. Currently, the biological role of TyDC proteins from trees is unknown. This study provided evidence showing that poplar functions in wood development and drought stress response. is preferentially expressed in wood-forming cells in stems. Overexpression of in poplars under the control of a xylem-specific promoter resulted in an increase in the ratio of xylem to phloem width, vessel cell area, and lignin accumulation in the stems. Biochemical assays revealed that PaTyDC4 is a component of the PaC3H17-PaMYB199 module-mediated pathway. In poplar stems, expression was directly suppressed by PaMYB199, which was attenuated by the interaction between PaC3H17 and PaMYB199. In addition, overexpression lines showed stronger drought tolerance than the wild-type lines, with higher photosynthetic capacity and lower levels of HO. These results indicate that PaTyDC4 promotes xylem differentiation and lignin deposition during secondary growth and confers drought tolerance. Our findings may be useful for the genetic modification of biomass and drought resistance in trees.\",\"PeriodicalId\":13178,\"journal\":{\"name\":\"Horticultural Plant Journal\",\"volume\":\"33 1\",\"pages\":\"\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2024-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Horticultural Plant Journal\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1016/j.hpj.2023.09.007\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"HORTICULTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Horticultural Plant Journal","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1016/j.hpj.2023.09.007","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HORTICULTURE","Score":null,"Total":0}
Wood forming tissue-specific expression of PaTyDC4 promotes xylem differentiation and lignin deposition during secondary growth and confers drought tolerance in Populus
Tyrosine decarboxylase (TyDC) converts tyrosine to tyramine and plays a crucial role in secondary metabolite reactions, development, and stress responses in plants. Currently, the biological role of TyDC proteins from trees is unknown. This study provided evidence showing that poplar functions in wood development and drought stress response. is preferentially expressed in wood-forming cells in stems. Overexpression of in poplars under the control of a xylem-specific promoter resulted in an increase in the ratio of xylem to phloem width, vessel cell area, and lignin accumulation in the stems. Biochemical assays revealed that PaTyDC4 is a component of the PaC3H17-PaMYB199 module-mediated pathway. In poplar stems, expression was directly suppressed by PaMYB199, which was attenuated by the interaction between PaC3H17 and PaMYB199. In addition, overexpression lines showed stronger drought tolerance than the wild-type lines, with higher photosynthetic capacity and lower levels of HO. These results indicate that PaTyDC4 promotes xylem differentiation and lignin deposition during secondary growth and confers drought tolerance. Our findings may be useful for the genetic modification of biomass and drought resistance in trees.
期刊介绍:
Horticultural Plant Journal (HPJ) is an OPEN ACCESS international journal. HPJ publishes research related to all horticultural plants, including fruits, vegetables, ornamental plants, tea plants, and medicinal plants, etc. The journal covers all aspects of horticultural crop sciences, including germplasm resources, genetics and breeding, tillage and cultivation, physiology and biochemistry, ecology, genomics, biotechnology, plant protection, postharvest processing, etc. Article types include Original research papers, Reviews, and Short communications.