菲罗啉的五十道阴影:在所有位置上使 1,10-菲罗啉功能化的合成策略。

IF 51.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Chemical Reviews Pub Date : 2024-05-15 DOI:10.1021/acs.chemrev.3c00543
Clémence Queffélec*, Palas Baran Pati and Yann Pellegrin*, 
{"title":"菲罗啉的五十道阴影:在所有位置上使 1,10-菲罗啉功能化的合成策略。","authors":"Clémence Queffélec*,&nbsp;Palas Baran Pati and Yann Pellegrin*,&nbsp;","doi":"10.1021/acs.chemrev.3c00543","DOIUrl":null,"url":null,"abstract":"<p >1,10-Phenanthroline (phen) is one of the most popular ligands ever used in coordination chemistry due to its strong affinity for a wide range of metals with various oxidation states. Its polyaromatic structure provides robustness and rigidity, leading to intriguing features in numerous fields (luminescent coordination scaffolds, catalysis, supramolecular chemistry, sensors, theranostics, etc.). Importantly, phen offers eight distinct positions for functional groups to be attached, showcasing remarkable versatility for such a simple ligand. As a result, phen has become a landmark molecule for coordination chemists, serving as a must-use ligand and a versatile platform for designing polyfunctional arrays. The extensive use of substituted phenanthroline ligands with different metal ions has resulted in a diverse array of complexes tailored for numerous applications. For instance, these complexes have been utilized as sensitizers in dye-sensitized solar cells, as luminescent probes modified with antibodies for biomaterials, and in the creation of elegant supramolecular architectures like rotaxanes and catenanes, exemplified by Sauvage’s Nobel Prize-winning work in 2016. In summary, phen has found applications in almost every facet of chemistry. An intriguing aspect of phen is the specific reactivity of each pair of carbon atoms ([2,9], [3,8], [4,7], and [5,6]), enabling the functionalization of each pair with different groups and leading to polyfunctional arrays. Furthermore, it is possible to differentiate each position in these pairs, resulting in non-symmetrical systems with tremendous versatility. In this Review, the authors aim to compile and categorize existing synthetic strategies for the stepwise polyfunctionalization of phen in various positions. This comprehensive toolbox will aid coordination chemists in designing virtually any polyfunctional ligand. The survey will encompass seminal work from the 1950s to the present day. The scope of the Review will be limited to 1,10-phenanthroline, excluding ligands with more intracyclic heteroatoms or fused aromatic cycles. Overall, the primary goal of this Review is to highlight both old and recent synthetic strategies that find applicability in the mentioned applications. By doing so, the authors hope to establish a first reference for phenanthroline synthesis, covering all possible positions on the backbone, and hope to inspire all concerned chemists to devise new strategies that have not yet been explored.</p>","PeriodicalId":32,"journal":{"name":"Chemical Reviews","volume":null,"pages":null},"PeriodicalIF":51.4000,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fifty Shades of Phenanthroline: Synthesis Strategies to Functionalize 1,10-Phenanthroline in All Positions\",\"authors\":\"Clémence Queffélec*,&nbsp;Palas Baran Pati and Yann Pellegrin*,&nbsp;\",\"doi\":\"10.1021/acs.chemrev.3c00543\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >1,10-Phenanthroline (phen) is one of the most popular ligands ever used in coordination chemistry due to its strong affinity for a wide range of metals with various oxidation states. Its polyaromatic structure provides robustness and rigidity, leading to intriguing features in numerous fields (luminescent coordination scaffolds, catalysis, supramolecular chemistry, sensors, theranostics, etc.). Importantly, phen offers eight distinct positions for functional groups to be attached, showcasing remarkable versatility for such a simple ligand. As a result, phen has become a landmark molecule for coordination chemists, serving as a must-use ligand and a versatile platform for designing polyfunctional arrays. The extensive use of substituted phenanthroline ligands with different metal ions has resulted in a diverse array of complexes tailored for numerous applications. For instance, these complexes have been utilized as sensitizers in dye-sensitized solar cells, as luminescent probes modified with antibodies for biomaterials, and in the creation of elegant supramolecular architectures like rotaxanes and catenanes, exemplified by Sauvage’s Nobel Prize-winning work in 2016. In summary, phen has found applications in almost every facet of chemistry. An intriguing aspect of phen is the specific reactivity of each pair of carbon atoms ([2,9], [3,8], [4,7], and [5,6]), enabling the functionalization of each pair with different groups and leading to polyfunctional arrays. Furthermore, it is possible to differentiate each position in these pairs, resulting in non-symmetrical systems with tremendous versatility. In this Review, the authors aim to compile and categorize existing synthetic strategies for the stepwise polyfunctionalization of phen in various positions. This comprehensive toolbox will aid coordination chemists in designing virtually any polyfunctional ligand. The survey will encompass seminal work from the 1950s to the present day. The scope of the Review will be limited to 1,10-phenanthroline, excluding ligands with more intracyclic heteroatoms or fused aromatic cycles. Overall, the primary goal of this Review is to highlight both old and recent synthetic strategies that find applicability in the mentioned applications. By doing so, the authors hope to establish a first reference for phenanthroline synthesis, covering all possible positions on the backbone, and hope to inspire all concerned chemists to devise new strategies that have not yet been explored.</p>\",\"PeriodicalId\":32,\"journal\":{\"name\":\"Chemical Reviews\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":51.4000,\"publicationDate\":\"2024-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Reviews\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.chemrev.3c00543\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Reviews","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.chemrev.3c00543","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

1,10-菲罗啉(phen)是配位化学中最常用的配体之一,因为它对各种氧化态的金属都有很强的亲和力。它的多芳香族结构具有坚固性和刚性,在许多领域(发光配位支架、催化、超分子化学、传感器、治疗学等)都具有引人入胜的特性。重要的是,phen 可提供八个不同的位置来连接官能团,对于这样一种简单的配体来说,展示了非凡的多功能性。因此,phen 已成为配位化学家的标志性分子,是一种必须使用的配体,也是设计多官能团阵列的多功能平台。取代菲罗啉配体与不同金属离子的广泛应用,产生了一系列适合多种应用的配合物。例如,这些配合物已被用作染料敏化太阳能电池的敏化剂、生物材料中用抗体修饰的发光探针,以及创建优雅的超分子结构(如 rotaxanes 和 catenanes),Sauvage 在 2016 年获得诺贝尔奖的工作就是一个例子。总之,phen 几乎应用于化学的方方面面。phen 的一个迷人之处在于每对碳原子([2,9]、[3,8]、[4,7]和[5,6])都具有特定的反应活性,这使得每对碳原子都能与不同的基团官能化,从而形成多官能团阵列。此外,还可以对这些配对中的每个位置进行区分,从而形成具有巨大多功能性的非对称系统。在本综述中,作者旨在对现有的合成策略进行梳理和分类,以逐步实现不同位置的 phen 的多官能化。这个全面的工具箱将帮助配位化学家设计出几乎所有的多官能团配体。调查将涵盖从 20 世纪 50 年代至今的开创性工作。综述的范围仅限于 1,10-菲罗啉,不包括含有更多内环杂原子或融合芳香循环的配体。总之,本综述的主要目的是强调在上述应用中适用的新旧合成策略。通过这样做,作者希望为菲罗啉的合成提供第一手参考资料,涵盖骨架上所有可能的位置,并希望激励所有相关化学家设计出尚未探索过的新策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fifty Shades of Phenanthroline: Synthesis Strategies to Functionalize 1,10-Phenanthroline in All Positions

1,10-Phenanthroline (phen) is one of the most popular ligands ever used in coordination chemistry due to its strong affinity for a wide range of metals with various oxidation states. Its polyaromatic structure provides robustness and rigidity, leading to intriguing features in numerous fields (luminescent coordination scaffolds, catalysis, supramolecular chemistry, sensors, theranostics, etc.). Importantly, phen offers eight distinct positions for functional groups to be attached, showcasing remarkable versatility for such a simple ligand. As a result, phen has become a landmark molecule for coordination chemists, serving as a must-use ligand and a versatile platform for designing polyfunctional arrays. The extensive use of substituted phenanthroline ligands with different metal ions has resulted in a diverse array of complexes tailored for numerous applications. For instance, these complexes have been utilized as sensitizers in dye-sensitized solar cells, as luminescent probes modified with antibodies for biomaterials, and in the creation of elegant supramolecular architectures like rotaxanes and catenanes, exemplified by Sauvage’s Nobel Prize-winning work in 2016. In summary, phen has found applications in almost every facet of chemistry. An intriguing aspect of phen is the specific reactivity of each pair of carbon atoms ([2,9], [3,8], [4,7], and [5,6]), enabling the functionalization of each pair with different groups and leading to polyfunctional arrays. Furthermore, it is possible to differentiate each position in these pairs, resulting in non-symmetrical systems with tremendous versatility. In this Review, the authors aim to compile and categorize existing synthetic strategies for the stepwise polyfunctionalization of phen in various positions. This comprehensive toolbox will aid coordination chemists in designing virtually any polyfunctional ligand. The survey will encompass seminal work from the 1950s to the present day. The scope of the Review will be limited to 1,10-phenanthroline, excluding ligands with more intracyclic heteroatoms or fused aromatic cycles. Overall, the primary goal of this Review is to highlight both old and recent synthetic strategies that find applicability in the mentioned applications. By doing so, the authors hope to establish a first reference for phenanthroline synthesis, covering all possible positions on the backbone, and hope to inspire all concerned chemists to devise new strategies that have not yet been explored.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chemical Reviews
Chemical Reviews 化学-化学综合
CiteScore
106.00
自引率
1.10%
发文量
278
审稿时长
4.3 months
期刊介绍: Chemical Reviews is a highly regarded and highest-ranked journal covering the general topic of chemistry. Its mission is to provide comprehensive, authoritative, critical, and readable reviews of important recent research in organic, inorganic, physical, analytical, theoretical, and biological chemistry. Since 1985, Chemical Reviews has also published periodic thematic issues that focus on a single theme or direction of emerging research.
期刊最新文献
Correction to Depolymerization within a Circular Plastics System. Emerging Atomistic Modeling Methods for Heterogeneous Electrocatalysis. Issue Publication Information Issue Editorial Masthead How to Propose a Great Chemical Reviews Article
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1