{"title":"乳香酸和桦木酸预处理可预防环磷酰胺诱导引起的肾毒性","authors":"Mehmet Berköz, Oğuzhan Çiftçi","doi":"10.1134/S1607672924600234","DOIUrl":null,"url":null,"abstract":"<p>Cyclophosphamide (CYP) is a chemotherapeutic drug used to treat various cancers. However, its clinical use is limited due to severe organ damage, particularly to the kidneys. While several phytochemicals have been identified as potential therapeutic targets for CYP nephrotoxicity, the nephroprotective effects of boswellic acid (BOSW) and betulinic acid (BET) have not yet been investigated. Our study used 42 rats divided into six equal groups. The study included six groups: control, CYP (200 mg/kg), CYP+BOSW20 (20 mg/kg), CYP+BOSW40 (40 mg/kg), CYP+BET20 (20 mg/kg), and CYP+BET40 (40 mg/kg). The pre-treatments with BOSW and BET lasted for 14 days, while the application of cyclophosphamide was performed intraperitoneally only on the 4th day of the study. After the experimental protocol, the animals were sacrificed, and their kidney tissues were isolated. Renal function parameters, histological examination, oxidative stress, and inflammation parameters were assessed both biochemically and at the molecular level in kidney tissue. The results showed that oxidative stress and inflammatory response were increased in the kidney tissue of rats treated with CYP, leading to impaired renal histology and function parameters (<i>p</i> < 0.05). Oral administration of both doses of BET and especially high doses of BOSW improved biochemical, oxidative, and inflammatory parameters significantly (<i>p</i> < 0.05). Histological studies also showed the restoration of normal kidney tissue architecture. BOSW and BET have promising biological activity against CYP-induced nephrotoxicity by attenuating inflammation and oxidative stress and enhancing antioxidant status.</p>","PeriodicalId":529,"journal":{"name":"Doklady Biochemistry and Biophysics","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Boswellic Acid and Betulinic Acid Pre-treatments Can Prevent the Nephrotoxicity Caused by Cyclophosphamide Induction\",\"authors\":\"Mehmet Berköz, Oğuzhan Çiftçi\",\"doi\":\"10.1134/S1607672924600234\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Cyclophosphamide (CYP) is a chemotherapeutic drug used to treat various cancers. However, its clinical use is limited due to severe organ damage, particularly to the kidneys. While several phytochemicals have been identified as potential therapeutic targets for CYP nephrotoxicity, the nephroprotective effects of boswellic acid (BOSW) and betulinic acid (BET) have not yet been investigated. Our study used 42 rats divided into six equal groups. The study included six groups: control, CYP (200 mg/kg), CYP+BOSW20 (20 mg/kg), CYP+BOSW40 (40 mg/kg), CYP+BET20 (20 mg/kg), and CYP+BET40 (40 mg/kg). The pre-treatments with BOSW and BET lasted for 14 days, while the application of cyclophosphamide was performed intraperitoneally only on the 4th day of the study. After the experimental protocol, the animals were sacrificed, and their kidney tissues were isolated. Renal function parameters, histological examination, oxidative stress, and inflammation parameters were assessed both biochemically and at the molecular level in kidney tissue. The results showed that oxidative stress and inflammatory response were increased in the kidney tissue of rats treated with CYP, leading to impaired renal histology and function parameters (<i>p</i> < 0.05). Oral administration of both doses of BET and especially high doses of BOSW improved biochemical, oxidative, and inflammatory parameters significantly (<i>p</i> < 0.05). Histological studies also showed the restoration of normal kidney tissue architecture. BOSW and BET have promising biological activity against CYP-induced nephrotoxicity by attenuating inflammation and oxidative stress and enhancing antioxidant status.</p>\",\"PeriodicalId\":529,\"journal\":{\"name\":\"Doklady Biochemistry and Biophysics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Doklady Biochemistry and Biophysics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1607672924600234\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Doklady Biochemistry and Biophysics","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1134/S1607672924600234","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Boswellic Acid and Betulinic Acid Pre-treatments Can Prevent the Nephrotoxicity Caused by Cyclophosphamide Induction
Cyclophosphamide (CYP) is a chemotherapeutic drug used to treat various cancers. However, its clinical use is limited due to severe organ damage, particularly to the kidneys. While several phytochemicals have been identified as potential therapeutic targets for CYP nephrotoxicity, the nephroprotective effects of boswellic acid (BOSW) and betulinic acid (BET) have not yet been investigated. Our study used 42 rats divided into six equal groups. The study included six groups: control, CYP (200 mg/kg), CYP+BOSW20 (20 mg/kg), CYP+BOSW40 (40 mg/kg), CYP+BET20 (20 mg/kg), and CYP+BET40 (40 mg/kg). The pre-treatments with BOSW and BET lasted for 14 days, while the application of cyclophosphamide was performed intraperitoneally only on the 4th day of the study. After the experimental protocol, the animals were sacrificed, and their kidney tissues were isolated. Renal function parameters, histological examination, oxidative stress, and inflammation parameters were assessed both biochemically and at the molecular level in kidney tissue. The results showed that oxidative stress and inflammatory response were increased in the kidney tissue of rats treated with CYP, leading to impaired renal histology and function parameters (p < 0.05). Oral administration of both doses of BET and especially high doses of BOSW improved biochemical, oxidative, and inflammatory parameters significantly (p < 0.05). Histological studies also showed the restoration of normal kidney tissue architecture. BOSW and BET have promising biological activity against CYP-induced nephrotoxicity by attenuating inflammation and oxidative stress and enhancing antioxidant status.
期刊介绍:
Doklady Biochemistry and Biophysics is a journal consisting of English translations of articles published in Russian in biochemistry and biophysics sections of the Russian-language journal Doklady Akademii Nauk. The journal''s goal is to publish the most significant new research in biochemistry and biophysics carried out in Russia today or in collaboration with Russian authors. The journal accepts only articles in the Russian language that are submitted or recommended by acting Russian or foreign members of the Russian Academy of Sciences. The journal does not accept direct submissions in English.