从盐生植物中提取纤维素,用于合成新型生物复合材料。

IF 3.2 4区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Biopolymers Pub Date : 2024-05-15 DOI:10.1002/bip.23586
Uroosa Ejaz, Yusra Shafquat, Muhammad Sohail, Aizaz Ahmed Shaikh, Muhammad Daniyal Arain, Tehmees Ahmed, Abdullah K. Alanazi
{"title":"从盐生植物中提取纤维素,用于合成新型生物复合材料。","authors":"Uroosa Ejaz,&nbsp;Yusra Shafquat,&nbsp;Muhammad Sohail,&nbsp;Aizaz Ahmed Shaikh,&nbsp;Muhammad Daniyal Arain,&nbsp;Tehmees Ahmed,&nbsp;Abdullah K. Alanazi","doi":"10.1002/bip.23586","DOIUrl":null,"url":null,"abstract":"<p>Cellulose nanofibers, a sustainable and promising material with widespread applications, exhibit appreciable strength and excellent mechanical and physicochemical properties. The preparation of cellulosic nanofibers from food or agricultural residue is not sustainable. Therefore, this study was designed to use three halophytic plants (<i>Cressa cretica, Phragmites karka</i>, and <i>Suaeda fruticosa</i>) to extract cellulose for the subsequent conversion to cellulosic nanofibers composites. The other extracted biomass components including lignin, hemicellulose, and pectin were also utilized to obtain industrially valuable enzymes. The maximum pectinase (31.56 IU mL<sup>−1</sup>), xylanase (35.21 IU mL<sup>−1</sup>), and laccase (15.89 IU mL<sup>−1</sup>) were produced after the fermentation of extracted pectin, hemicellulose, and lignin from <i>S. fruticosa</i>, <i>P. karka</i>, and <i>C. cretica</i>, respectively. Cellulose was methylated (with a degree of substitution of 2.4) and subsequently converted into a composite using polyvinyl alcohol. Scanning electron microscopy and Fourier-transform infrared spectroscopy confirmed the successful synthesis of the composites. The composites made up of cellulose from <i>C. cretica</i> and <i>S. fruticosa</i> had a high tensile strength (21.5 and 15.2 MPa) and low biodegradability (47.58% and 44.56%, respectively) after dumping for 3 months in soil, as compared with the composite from <i>P. karka</i> (98.79% biodegradability and 4.9 MPa tensile strength). Moreover, all the composites exhibited antibacterial activity against gram-negative bacteria (<i>Escherichia coli</i> and <i>Klebsiella pneumoniae</i>) and gram-positive bacteria (<i>Staphylococcus aureus</i>). Hence, this study emphasizes the possibility for various industrial applications of biomass from halophytic plants.</p>","PeriodicalId":8866,"journal":{"name":"Biopolymers","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Extraction of cellulose from halophytic plants for the synthesis of a novel biocomposite\",\"authors\":\"Uroosa Ejaz,&nbsp;Yusra Shafquat,&nbsp;Muhammad Sohail,&nbsp;Aizaz Ahmed Shaikh,&nbsp;Muhammad Daniyal Arain,&nbsp;Tehmees Ahmed,&nbsp;Abdullah K. Alanazi\",\"doi\":\"10.1002/bip.23586\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Cellulose nanofibers, a sustainable and promising material with widespread applications, exhibit appreciable strength and excellent mechanical and physicochemical properties. The preparation of cellulosic nanofibers from food or agricultural residue is not sustainable. Therefore, this study was designed to use three halophytic plants (<i>Cressa cretica, Phragmites karka</i>, and <i>Suaeda fruticosa</i>) to extract cellulose for the subsequent conversion to cellulosic nanofibers composites. The other extracted biomass components including lignin, hemicellulose, and pectin were also utilized to obtain industrially valuable enzymes. The maximum pectinase (31.56 IU mL<sup>−1</sup>), xylanase (35.21 IU mL<sup>−1</sup>), and laccase (15.89 IU mL<sup>−1</sup>) were produced after the fermentation of extracted pectin, hemicellulose, and lignin from <i>S. fruticosa</i>, <i>P. karka</i>, and <i>C. cretica</i>, respectively. Cellulose was methylated (with a degree of substitution of 2.4) and subsequently converted into a composite using polyvinyl alcohol. Scanning electron microscopy and Fourier-transform infrared spectroscopy confirmed the successful synthesis of the composites. The composites made up of cellulose from <i>C. cretica</i> and <i>S. fruticosa</i> had a high tensile strength (21.5 and 15.2 MPa) and low biodegradability (47.58% and 44.56%, respectively) after dumping for 3 months in soil, as compared with the composite from <i>P. karka</i> (98.79% biodegradability and 4.9 MPa tensile strength). Moreover, all the composites exhibited antibacterial activity against gram-negative bacteria (<i>Escherichia coli</i> and <i>Klebsiella pneumoniae</i>) and gram-positive bacteria (<i>Staphylococcus aureus</i>). Hence, this study emphasizes the possibility for various industrial applications of biomass from halophytic plants.</p>\",\"PeriodicalId\":8866,\"journal\":{\"name\":\"Biopolymers\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biopolymers\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/bip.23586\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biopolymers","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bip.23586","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

纤维素纳米纤维是一种具有广泛应用前景的可持续材料,具有可观的强度和优异的机械和物理化学特性。从食物或农业残留物中制备纤维素纳米纤维不是可持续的。因此,本研究旨在利用三种卤叶植物(Cressa cretica、Phragmites karka 和 Suaeda fruticosa)提取纤维素,然后将其转化为纤维素纳米纤维复合材料。提取的其他生物质成分(包括木质素、半纤维素和果胶)也被用来获得有工业价值的酶。从 S. fruticosa、P. karka 和 C. cretica 提取的果胶、半纤维素和木质素经发酵后,分别产生了最大的果胶酶(31.56 IU mL-1)、木聚糖酶(35.21 IU mL-1)和漆酶(15.89 IU mL-1)。纤维素被甲基化(取代度为 2.4),然后用聚乙烯醇转化成复合材料。扫描电子显微镜和傅立叶变换红外光谱证实了复合材料的成功合成。由 C. cretica 和 S. fruticosa 纤维素制成的复合材料在土壤中倾倒 3 个月后具有较高的拉伸强度(21.5 和 15.2 兆帕)和较低的生物降解性(分别为 47.58% 和 44.56%),而 P. karka 的复合材料则具有 98.79% 的生物降解性和 4.9 兆帕的拉伸强度。此外,所有复合材料都对革兰氏阴性菌(大肠杆菌和肺炎克雷伯氏菌)和革兰氏阳性菌(金黄色葡萄球菌)具有抗菌活性。因此,这项研究强调了卤叶植物生物质在各种工业应用中的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Extraction of cellulose from halophytic plants for the synthesis of a novel biocomposite

Cellulose nanofibers, a sustainable and promising material with widespread applications, exhibit appreciable strength and excellent mechanical and physicochemical properties. The preparation of cellulosic nanofibers from food or agricultural residue is not sustainable. Therefore, this study was designed to use three halophytic plants (Cressa cretica, Phragmites karka, and Suaeda fruticosa) to extract cellulose for the subsequent conversion to cellulosic nanofibers composites. The other extracted biomass components including lignin, hemicellulose, and pectin were also utilized to obtain industrially valuable enzymes. The maximum pectinase (31.56 IU mL−1), xylanase (35.21 IU mL−1), and laccase (15.89 IU mL−1) were produced after the fermentation of extracted pectin, hemicellulose, and lignin from S. fruticosa, P. karka, and C. cretica, respectively. Cellulose was methylated (with a degree of substitution of 2.4) and subsequently converted into a composite using polyvinyl alcohol. Scanning electron microscopy and Fourier-transform infrared spectroscopy confirmed the successful synthesis of the composites. The composites made up of cellulose from C. cretica and S. fruticosa had a high tensile strength (21.5 and 15.2 MPa) and low biodegradability (47.58% and 44.56%, respectively) after dumping for 3 months in soil, as compared with the composite from P. karka (98.79% biodegradability and 4.9 MPa tensile strength). Moreover, all the composites exhibited antibacterial activity against gram-negative bacteria (Escherichia coli and Klebsiella pneumoniae) and gram-positive bacteria (Staphylococcus aureus). Hence, this study emphasizes the possibility for various industrial applications of biomass from halophytic plants.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biopolymers
Biopolymers 生物-生化与分子生物学
CiteScore
5.30
自引率
0.00%
发文量
48
审稿时长
3 months
期刊介绍: Founded in 1963, Biopolymers publishes strictly peer-reviewed papers examining naturally occurring and synthetic biological macromolecules. By including experimental and theoretical studies on the fundamental behaviour as well as applications of biopolymers, the journal serves the interdisciplinary biochemical, biophysical, biomaterials and biomedical research communities.
期刊最新文献
Fabrication of Bio-Based Composite Materials for Antimicrobial Cotton Fabric With Microbial Anti-Adhesive Activity. An Updated Review Summarizing the Anticancer Potential of Poly(Lactic-co-Glycolic Acid) (PLGA) Based Curcumin, Epigallocatechin Gallate, and Resveratrol Nanocarriers. On the Architecture of Starch Granules Revealed by Iodine Binding and Lintnerization. Part 2: Molecular Structure of Lintnerized Starches. Chitosan/Fibroin Biopolymer-Based Hydrogels for Potential Angiogenesis in Developing Chicks and Accelerated Wound Healing in Mice. Development of HEMA-Succinic Acid-PEG Bio-Based Monomers for High-Performance Hydrogels in Regenerative Medicine.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1