强力霉素介导的蛇毒磷脂酶和金属蛋白酶抑制作用

IF 1.2 4区 医学 Q2 MEDICINE, GENERAL & INTERNAL Military Medicine Pub Date : 2024-11-05 DOI:10.1093/milmed/usae184
Daniel K Arens, Meaghan A Rose, Emelyn M Salazar, Merideth A Harvey, Eun Y Huh, April A Ford, Daniel W Thompson, Elda E Sanchez, Yoon Y Hwang
{"title":"强力霉素介导的蛇毒磷脂酶和金属蛋白酶抑制作用","authors":"Daniel K Arens, Meaghan A Rose, Emelyn M Salazar, Merideth A Harvey, Eun Y Huh, April A Ford, Daniel W Thompson, Elda E Sanchez, Yoon Y Hwang","doi":"10.1093/milmed/usae184","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Warfighters are exposed to life-threatening injuries daily and according to the Joint Trauma System Military Clinical Practice Guideline-Global Snake Envenomation Management snakebites are a concerning threat in all theaters of operation. Snake venom is a complex mixture of toxins including phospholipases A2 (PLA2) and snake venom metalloproteinases (SVMP) that produce myotoxic, hemotoxic, and cytotoxic injuries. Antibody-based antivenom is the standard of care but new approaches including small-molecule inhibitors have gained attention in recent years. Doxycycline is an effective inhibitor of human metalloproteinases and PLA2. The enzymatic activities of 3 phylogenetically distinct snakes: Agkistrodon piscivorus, Naja kaouthia, and Daboia russelii were tested under inhibitory conditions using doxycycline.</p><p><strong>Materials and methods: </strong>Enzymatic activity of PLA2 and SVMP was measured in N. kaouthia, D. russelii, and A. piscivorus venom alone and with doxycycline using EnzChek Phospholipase A2 and Gelatinase Assay Kits. A 1-way ANOVA with Tukey's post-hoc test was used to conduct comparative analysis. The median lethal dose of the venoms, the effective dose of doxycycline, and creatine kinase (CK) inhibition levels were measured in a murine model with adult Bagg Albino (BALB/c) mice using intramuscular injections. Median lethal and effective doses were determined using Spearman-Karber's method and a 1-way ANOVA with Tukey's post-hoc test was used to compare CK inhibition levels.</p><p><strong>Results: </strong>Phospholipases A2 activity was reduced to 1.5% to 44.0% in all 3 venoms in a dose-dependent manner using 0.32, 0.16, and 0.08 mg/mL doxycycline when compared to venom-only controls (P < .0001) (Fig. 1A). Snake venom metalloproteinases activity was reduced to 4% to 62% in all 3 venoms in a dose-dependent manner using 0.32, 0.16, and 0.08 mg/mL doxycycline (P < .0001) (Fig. 1B). The lethal dose (LD50) values of the venoms in the murine model were calculated as follows: A. piscivorus = 20.29 mg/kg (Fig. 2A), N. kaouthia = 0.38 mg/kg (Fig. 2B), and D. russelii = 7.92 mg/kg (Fig. 2C). The effective dose (ED50) of doxycycline in A. piscivorus was calculated to be 20.82 mg/kg and 72.07 mg/kg when treating D. russelii venom. No ED50 could be calculated when treating N. kaouthia venom (Fig. 3). Creatine kinase activity was significantly decreased in all 3 venoms treated with doxycycline (P < .0001) (Fig. 4).</p><p><strong>Conclusion: </strong>Doxycycline reduced PLA2- and SVMP-related lethality, particularly in A. piscivorus envenomings and in a limited capacity with D. russelii revealing its promise as a treatment for snakebites. In addition, CK activity, a common indicator of muscle damage was inhibited in mice that received doxycycline-treated venom. The doxycycline concentrations identified in the ED50 studies correspond to 1,456 to 5,061 mg dosages for a 70 kg human. Factors including venom yield and snake species would affect the actual dosage needed. Studies into high-dose doxycycline safety and its effectiveness against several snake species is needed to fully translate its use into humans. Based on this work, doxycycline could be used as a treatment en route to higher echelons of care, providing protection from muscle damage and reducing lethality in different snake species.</p>","PeriodicalId":18638,"journal":{"name":"Military Medicine","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Doxycycline-Mediated Inhibition of Snake Venom Phospholipase and Metalloproteinase.\",\"authors\":\"Daniel K Arens, Meaghan A Rose, Emelyn M Salazar, Merideth A Harvey, Eun Y Huh, April A Ford, Daniel W Thompson, Elda E Sanchez, Yoon Y Hwang\",\"doi\":\"10.1093/milmed/usae184\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>Warfighters are exposed to life-threatening injuries daily and according to the Joint Trauma System Military Clinical Practice Guideline-Global Snake Envenomation Management snakebites are a concerning threat in all theaters of operation. Snake venom is a complex mixture of toxins including phospholipases A2 (PLA2) and snake venom metalloproteinases (SVMP) that produce myotoxic, hemotoxic, and cytotoxic injuries. Antibody-based antivenom is the standard of care but new approaches including small-molecule inhibitors have gained attention in recent years. Doxycycline is an effective inhibitor of human metalloproteinases and PLA2. The enzymatic activities of 3 phylogenetically distinct snakes: Agkistrodon piscivorus, Naja kaouthia, and Daboia russelii were tested under inhibitory conditions using doxycycline.</p><p><strong>Materials and methods: </strong>Enzymatic activity of PLA2 and SVMP was measured in N. kaouthia, D. russelii, and A. piscivorus venom alone and with doxycycline using EnzChek Phospholipase A2 and Gelatinase Assay Kits. A 1-way ANOVA with Tukey's post-hoc test was used to conduct comparative analysis. The median lethal dose of the venoms, the effective dose of doxycycline, and creatine kinase (CK) inhibition levels were measured in a murine model with adult Bagg Albino (BALB/c) mice using intramuscular injections. Median lethal and effective doses were determined using Spearman-Karber's method and a 1-way ANOVA with Tukey's post-hoc test was used to compare CK inhibition levels.</p><p><strong>Results: </strong>Phospholipases A2 activity was reduced to 1.5% to 44.0% in all 3 venoms in a dose-dependent manner using 0.32, 0.16, and 0.08 mg/mL doxycycline when compared to venom-only controls (P < .0001) (Fig. 1A). Snake venom metalloproteinases activity was reduced to 4% to 62% in all 3 venoms in a dose-dependent manner using 0.32, 0.16, and 0.08 mg/mL doxycycline (P < .0001) (Fig. 1B). The lethal dose (LD50) values of the venoms in the murine model were calculated as follows: A. piscivorus = 20.29 mg/kg (Fig. 2A), N. kaouthia = 0.38 mg/kg (Fig. 2B), and D. russelii = 7.92 mg/kg (Fig. 2C). The effective dose (ED50) of doxycycline in A. piscivorus was calculated to be 20.82 mg/kg and 72.07 mg/kg when treating D. russelii venom. No ED50 could be calculated when treating N. kaouthia venom (Fig. 3). Creatine kinase activity was significantly decreased in all 3 venoms treated with doxycycline (P < .0001) (Fig. 4).</p><p><strong>Conclusion: </strong>Doxycycline reduced PLA2- and SVMP-related lethality, particularly in A. piscivorus envenomings and in a limited capacity with D. russelii revealing its promise as a treatment for snakebites. In addition, CK activity, a common indicator of muscle damage was inhibited in mice that received doxycycline-treated venom. The doxycycline concentrations identified in the ED50 studies correspond to 1,456 to 5,061 mg dosages for a 70 kg human. Factors including venom yield and snake species would affect the actual dosage needed. Studies into high-dose doxycycline safety and its effectiveness against several snake species is needed to fully translate its use into humans. Based on this work, doxycycline could be used as a treatment en route to higher echelons of care, providing protection from muscle damage and reducing lethality in different snake species.</p>\",\"PeriodicalId\":18638,\"journal\":{\"name\":\"Military Medicine\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Military Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1093/milmed/usae184\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MEDICINE, GENERAL & INTERNAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Military Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/milmed/usae184","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICINE, GENERAL & INTERNAL","Score":null,"Total":0}
引用次数: 0

摘要

简介:根据《联合创伤系统军事临床实践指南--全球毒蛇啮咬管理》,蛇咬伤在所有战区都是一种令人担忧的威胁。蛇毒是一种复杂的毒素混合物,包括磷脂酶 A2 (PLA2) 和蛇毒金属蛋白酶 (SVMP),可产生肌毒性、血液毒性和细胞毒性损伤。以抗体为基础的抗蛇毒血清是标准的治疗方法,但包括小分子抑制剂在内的新方法近年来也备受关注。强力霉素是人类金属蛋白酶和 PLA2 的有效抑制剂。3 种不同系统发育的蛇的酶活性:在多西环素的抑制条件下测试了 Agkistrodon piscivorus、Naja kaouthia 和 Daboia russelii 的酶活性:使用 EnzChek 磷脂酶 A2 和明胶酶检测试剂盒测定了 N. kaouthia、D. russelii 和 A. piscivorus 毒液中单独和与强力霉素一起使用时的 PLA2 和 SVMP 酶活性。采用单因素方差分析和Tukey事后检验进行比较分析。在巴格白化(BALB/c)成年小鼠模型中,采用肌肉注射法测定了毒液的中位致死剂量、强力霉素的有效剂量和肌酸激酶(CK)抑制水平。使用 Spearman-Karber 方法确定了中位致死剂量和有效剂量,并使用单因素方差分析和 Tukey 后检验比较了肌酸激酶抑制水平:结果:与仅使用毒液的对照组相比,使用 0.32、0.16 和 0.08 毫克/毫升多西环素可将所有 3 种毒液中的磷脂酶 A2 活性降低 1.5% 至 44.0%,且其降低呈剂量依赖性(P 结论:多西环素可降低磷脂酶 A2 活性,但其降低幅度与毒液对照组无关):多西环素降低了PLA2-和SVMP相关的致死率,尤其是在A. piscivorus蛇毒中毒中,而且在有限的D. russelii蛇毒中毒中,这揭示了多西环素作为蛇咬伤治疗药物的前景。此外,接受过多西环素处理毒液的小鼠肌肉损伤的常见指标--CK活性也受到了抑制。ED50 研究中确定的多西环素浓度相当于 70 公斤体重的人服用 1,456 至 5,061 毫克的剂量。毒液产量和蛇的种类等因素会影响实际所需剂量。需要对大剂量强力霉素的安全性及其对多种蛇类的有效性进行研究,以便将其完全应用于人类。在这项工作的基础上,多西环素可作为一种治疗方法,用于更高级别的治疗,保护肌肉免受损伤,并降低不同蛇类的致死率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Doxycycline-Mediated Inhibition of Snake Venom Phospholipase and Metalloproteinase.

Introduction: Warfighters are exposed to life-threatening injuries daily and according to the Joint Trauma System Military Clinical Practice Guideline-Global Snake Envenomation Management snakebites are a concerning threat in all theaters of operation. Snake venom is a complex mixture of toxins including phospholipases A2 (PLA2) and snake venom metalloproteinases (SVMP) that produce myotoxic, hemotoxic, and cytotoxic injuries. Antibody-based antivenom is the standard of care but new approaches including small-molecule inhibitors have gained attention in recent years. Doxycycline is an effective inhibitor of human metalloproteinases and PLA2. The enzymatic activities of 3 phylogenetically distinct snakes: Agkistrodon piscivorus, Naja kaouthia, and Daboia russelii were tested under inhibitory conditions using doxycycline.

Materials and methods: Enzymatic activity of PLA2 and SVMP was measured in N. kaouthia, D. russelii, and A. piscivorus venom alone and with doxycycline using EnzChek Phospholipase A2 and Gelatinase Assay Kits. A 1-way ANOVA with Tukey's post-hoc test was used to conduct comparative analysis. The median lethal dose of the venoms, the effective dose of doxycycline, and creatine kinase (CK) inhibition levels were measured in a murine model with adult Bagg Albino (BALB/c) mice using intramuscular injections. Median lethal and effective doses were determined using Spearman-Karber's method and a 1-way ANOVA with Tukey's post-hoc test was used to compare CK inhibition levels.

Results: Phospholipases A2 activity was reduced to 1.5% to 44.0% in all 3 venoms in a dose-dependent manner using 0.32, 0.16, and 0.08 mg/mL doxycycline when compared to venom-only controls (P < .0001) (Fig. 1A). Snake venom metalloproteinases activity was reduced to 4% to 62% in all 3 venoms in a dose-dependent manner using 0.32, 0.16, and 0.08 mg/mL doxycycline (P < .0001) (Fig. 1B). The lethal dose (LD50) values of the venoms in the murine model were calculated as follows: A. piscivorus = 20.29 mg/kg (Fig. 2A), N. kaouthia = 0.38 mg/kg (Fig. 2B), and D. russelii = 7.92 mg/kg (Fig. 2C). The effective dose (ED50) of doxycycline in A. piscivorus was calculated to be 20.82 mg/kg and 72.07 mg/kg when treating D. russelii venom. No ED50 could be calculated when treating N. kaouthia venom (Fig. 3). Creatine kinase activity was significantly decreased in all 3 venoms treated with doxycycline (P < .0001) (Fig. 4).

Conclusion: Doxycycline reduced PLA2- and SVMP-related lethality, particularly in A. piscivorus envenomings and in a limited capacity with D. russelii revealing its promise as a treatment for snakebites. In addition, CK activity, a common indicator of muscle damage was inhibited in mice that received doxycycline-treated venom. The doxycycline concentrations identified in the ED50 studies correspond to 1,456 to 5,061 mg dosages for a 70 kg human. Factors including venom yield and snake species would affect the actual dosage needed. Studies into high-dose doxycycline safety and its effectiveness against several snake species is needed to fully translate its use into humans. Based on this work, doxycycline could be used as a treatment en route to higher echelons of care, providing protection from muscle damage and reducing lethality in different snake species.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Military Medicine
Military Medicine MEDICINE, GENERAL & INTERNAL-
CiteScore
2.20
自引率
8.30%
发文量
393
审稿时长
4-8 weeks
期刊介绍: Military Medicine is the official international journal of AMSUS. Articles published in the journal are peer-reviewed scientific papers, case reports, and editorials. The journal also publishes letters to the editor. The objective of the journal is to promote awareness of federal medicine by providing a forum for responsible discussion of common ideas and problems relevant to federal healthcare. Its mission is: To increase healthcare education by providing scientific and other information to its readers; to facilitate communication; and to offer a prestige publication for members’ writings.
期刊最新文献
Fatigue and Sleep-related Impairment as Predictors of the Effect of Nonpharmacological Therapies for Active duty Service Members With Chronic Pain: A Secondary Analysis of a Pragmatic Randomized Clinical Trial. Challenges to School Success Among Children in U.S. Military Families. Combat-Relevant Anesthesia Fellowships Help Sustain the Army's Multidomain Medical Force. Preparing Military Interprofessional Health Care Teams for Effective Collaboration. Synopsis of the 2023 U.S. Department of VA and U.S. DoD Clinical Practice Guideline for the Management of Pregnancy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1