气候变暖对草地土壤微生物群落的影响在凉爽的月份会被放大。

IF 10.8 1区 环境科学与生态学 Q1 ECOLOGY ISME Journal Pub Date : 2024-01-08 DOI:10.1093/ismejo/wrae088
Jiesi Lei, Yuanlong Su, Siyang Jian, Xue Guo, Mengting Yuan, Colin T Bates, Zhou Jason Shi, Jiabao Li, Yifan Su, Daliang Ning, Liyou Wu, Jizhong Zhou, Yunfeng Yang
{"title":"气候变暖对草地土壤微生物群落的影响在凉爽的月份会被放大。","authors":"Jiesi Lei, Yuanlong Su, Siyang Jian, Xue Guo, Mengting Yuan, Colin T Bates, Zhou Jason Shi, Jiabao Li, Yifan Su, Daliang Ning, Liyou Wu, Jizhong Zhou, Yunfeng Yang","doi":"10.1093/ismejo/wrae088","DOIUrl":null,"url":null,"abstract":"<p><p>Global warming modulates soil respiration (RS) via microbial decomposition, which is seasonally dependent. Yet, the magnitude and direction of this modulation remain unclear, partly owing to the lack of knowledge on how microorganisms respond to seasonal changes. Here, we investigated the temporal dynamics of soil microbial communities over 12 consecutive months under experimental warming in a tallgrass prairie ecosystem. The interplay between warming and time altered (P < 0.05) the taxonomic and functional compositions of microbial communities. During the cool months (January to February and October to December), warming induced a soil microbiome with a higher genomic potential for carbon decomposition, community-level ribosomal RNA operon (rrn) copy numbers, and microbial metabolic quotients, suggesting that warming stimulated fast-growing microorganisms that enhanced carbon decomposition. Modeling analyses further showed that warming reduced the temperature sensitivity of microbial carbon use efficiency (CUE) by 28.7% when monthly average temperature was low, resulting in lower microbial CUE and higher heterotrophic respiration (Rh) potentials. Structural equation modeling showed that warming modulated both Rh and RS directly by altering soil temperature and indirectly by influencing microbial community traits, soil moisture, nitrate content, soil pH, and gross primary productivity. The modulation of Rh by warming was more pronounced in cooler months compared to warmer ones. Together, our findings reveal distinct warming-induced effects on microbial functional traits in cool months, challenging the norm of soil sampling only in the peak growing season, and advancing our mechanistic understanding of the seasonal pattern of RS and Rh sensitivity to warming.</p>","PeriodicalId":50271,"journal":{"name":"ISME Journal","volume":" ","pages":""},"PeriodicalIF":10.8000,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11170927/pdf/","citationCount":"0","resultStr":"{\"title\":\"Warming effects on grassland soil microbial communities are amplified in cool months.\",\"authors\":\"Jiesi Lei, Yuanlong Su, Siyang Jian, Xue Guo, Mengting Yuan, Colin T Bates, Zhou Jason Shi, Jiabao Li, Yifan Su, Daliang Ning, Liyou Wu, Jizhong Zhou, Yunfeng Yang\",\"doi\":\"10.1093/ismejo/wrae088\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Global warming modulates soil respiration (RS) via microbial decomposition, which is seasonally dependent. Yet, the magnitude and direction of this modulation remain unclear, partly owing to the lack of knowledge on how microorganisms respond to seasonal changes. Here, we investigated the temporal dynamics of soil microbial communities over 12 consecutive months under experimental warming in a tallgrass prairie ecosystem. The interplay between warming and time altered (P < 0.05) the taxonomic and functional compositions of microbial communities. During the cool months (January to February and October to December), warming induced a soil microbiome with a higher genomic potential for carbon decomposition, community-level ribosomal RNA operon (rrn) copy numbers, and microbial metabolic quotients, suggesting that warming stimulated fast-growing microorganisms that enhanced carbon decomposition. Modeling analyses further showed that warming reduced the temperature sensitivity of microbial carbon use efficiency (CUE) by 28.7% when monthly average temperature was low, resulting in lower microbial CUE and higher heterotrophic respiration (Rh) potentials. Structural equation modeling showed that warming modulated both Rh and RS directly by altering soil temperature and indirectly by influencing microbial community traits, soil moisture, nitrate content, soil pH, and gross primary productivity. The modulation of Rh by warming was more pronounced in cooler months compared to warmer ones. Together, our findings reveal distinct warming-induced effects on microbial functional traits in cool months, challenging the norm of soil sampling only in the peak growing season, and advancing our mechanistic understanding of the seasonal pattern of RS and Rh sensitivity to warming.</p>\",\"PeriodicalId\":50271,\"journal\":{\"name\":\"ISME Journal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":10.8000,\"publicationDate\":\"2024-01-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11170927/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ISME Journal\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1093/ismejo/wrae088\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISME Journal","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1093/ismejo/wrae088","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

全球变暖会通过微生物分解作用调节土壤呼吸作用(RS),而这种作用与季节有关。然而,这种调节的幅度和方向仍不清楚,部分原因是缺乏有关微生物如何应对季节变化的知识。在这里,我们研究了高草草原生态系统在实验性变暖条件下连续 12 个月土壤微生物群落的时间动态。变暖和时间之间的相互作用改变了微生物群落的分类和功能组成(p < 0.05)。在凉爽的月份(1 月至 2 月和 10 月至 12 月),气候变暖导致土壤微生物群具有更高的碳分解基因组潜力、群落级核糖体 RNA 操作子(rrn)拷贝数和微生物代谢商,这表明气候变暖刺激了快速生长的微生物,从而促进了碳分解。建模分析进一步表明,当月平均气温较低时,气候变暖使微生物碳利用效率对温度的敏感性降低了28.7%,导致微生物碳利用效率降低,异养呼吸(Rh)潜能值升高。结构方程模型显示,气候变暖通过改变土壤温度直接调节 Rh 和 RS,并通过影响微生物群落特征、土壤水分、硝酸盐含量、土壤 pH 值和总初级生产力间接调节 Rh 和 RS。气候变暖对 Rh 的调节作用在凉爽月份比温暖月份更明显。总之,我们的研究结果揭示了气候变暖对凉爽月份微生物功能特征的明显影响,挑战了仅在生长旺季进行土壤采样的常规做法,并推进了我们对 RS 和 Rh 对气候变暖敏感性的季节模式的机理认识。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Warming effects on grassland soil microbial communities are amplified in cool months.

Global warming modulates soil respiration (RS) via microbial decomposition, which is seasonally dependent. Yet, the magnitude and direction of this modulation remain unclear, partly owing to the lack of knowledge on how microorganisms respond to seasonal changes. Here, we investigated the temporal dynamics of soil microbial communities over 12 consecutive months under experimental warming in a tallgrass prairie ecosystem. The interplay between warming and time altered (P < 0.05) the taxonomic and functional compositions of microbial communities. During the cool months (January to February and October to December), warming induced a soil microbiome with a higher genomic potential for carbon decomposition, community-level ribosomal RNA operon (rrn) copy numbers, and microbial metabolic quotients, suggesting that warming stimulated fast-growing microorganisms that enhanced carbon decomposition. Modeling analyses further showed that warming reduced the temperature sensitivity of microbial carbon use efficiency (CUE) by 28.7% when monthly average temperature was low, resulting in lower microbial CUE and higher heterotrophic respiration (Rh) potentials. Structural equation modeling showed that warming modulated both Rh and RS directly by altering soil temperature and indirectly by influencing microbial community traits, soil moisture, nitrate content, soil pH, and gross primary productivity. The modulation of Rh by warming was more pronounced in cooler months compared to warmer ones. Together, our findings reveal distinct warming-induced effects on microbial functional traits in cool months, challenging the norm of soil sampling only in the peak growing season, and advancing our mechanistic understanding of the seasonal pattern of RS and Rh sensitivity to warming.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ISME Journal
ISME Journal 环境科学-生态学
CiteScore
22.10
自引率
2.70%
发文量
171
审稿时长
2.6 months
期刊介绍: The ISME Journal covers the diverse and integrated areas of microbial ecology. We encourage contributions that represent major advances for the study of microbial ecosystems, communities, and interactions of microorganisms in the environment. Articles in The ISME Journal describe pioneering discoveries of wide appeal that enhance our understanding of functional and mechanistic relationships among microorganisms, their communities, and their habitats.
期刊最新文献
Impact of timing on the invasion of synthetic bacterial communities. Biotics and bacterial function: impact on gut and host health. Saccharomyces boulardii enhances anti-inflammatory effectors and AhR activation via metabolic interactions in probiotic communities. Reversed oxidative TCA (roTCA) for carbon fixation by an Acidimicrobiia strain from a saline lake. Characterizing core microbiota and regulatory functions of the pig gut microbiome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1