跨海拔梯度森林带的红树林幼苗建立和存活的生物物理模型

IF 3.5 2区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY Journal of Geophysical Research: Earth Surface Pub Date : 2024-05-14 DOI:10.1029/2024JF007664
R. Gijsman, E. M. Horstman, A. Swales, T. Balke, P. W. J. M. Willemsen, D. van der Wal, K. M. Wijnberg
{"title":"跨海拔梯度森林带的红树林幼苗建立和存活的生物物理模型","authors":"R. Gijsman,&nbsp;E. M. Horstman,&nbsp;A. Swales,&nbsp;T. Balke,&nbsp;P. W. J. M. Willemsen,&nbsp;D. van der Wal,&nbsp;K. M. Wijnberg","doi":"10.1029/2024JF007664","DOIUrl":null,"url":null,"abstract":"<p>Mangrove forest development critically depends on the establishment and survival of seedlings. Mechanistic insights into how water levels, waves and bed level dynamics influence the establishment process of individual mangrove seedlings are increasing. However, little is known about how spatial and temporal changes in water levels, waves and bed level dynamics across elevation gradients in mangrove forests facilitate/limit seedling dynamics. For this study, a new seedling establishment and growth model was integrated into a process-based hydrodynamic and morphodynamic numerical model. This biophysical model was applied to a fringing mangrove forest located in the southern Firth of Thames, Aotearoa, New Zealand. This study quantifies the increasing establishment density and survival probability of mangrove seedlings from the lower-elevated unvegetated intertidal flat toward the higher-elevated mature mangrove forest. Three cross-shore zones with distinctive seedling dynamics were identified: (a) a zone with daily tidal inundation where seedling dynamics are episodic and limited by the dispersal of individual propagules that rapidly anchor to the substrate by root growth, (b) a zone with daily to bi-weekly tidal inundation where seedling dynamics respond to variations in spring-neap tidal cycles and, (c) a zone with less than bi-weekly inundation where seedling dynamics are governed by high propagule supply and seedling survival probability. The seedling establishment density and survival probability are dominated by annual extremes in tidal hydroperiod and bed shear stresses, respectively. The obtained parameterizations can be used to incorporate seedling dynamics in decadal-timescale mangrove forest development models that are instrumental for mangrove management and restoration.</p>","PeriodicalId":15887,"journal":{"name":"Journal of Geophysical Research: Earth Surface","volume":"129 5","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JF007664","citationCount":"0","resultStr":"{\"title\":\"Biophysical Modeling of Mangrove Seedling Establishment and Survival Across an Elevation Gradient With Forest Zones\",\"authors\":\"R. Gijsman,&nbsp;E. M. Horstman,&nbsp;A. Swales,&nbsp;T. Balke,&nbsp;P. W. J. M. Willemsen,&nbsp;D. van der Wal,&nbsp;K. M. Wijnberg\",\"doi\":\"10.1029/2024JF007664\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Mangrove forest development critically depends on the establishment and survival of seedlings. Mechanistic insights into how water levels, waves and bed level dynamics influence the establishment process of individual mangrove seedlings are increasing. However, little is known about how spatial and temporal changes in water levels, waves and bed level dynamics across elevation gradients in mangrove forests facilitate/limit seedling dynamics. For this study, a new seedling establishment and growth model was integrated into a process-based hydrodynamic and morphodynamic numerical model. This biophysical model was applied to a fringing mangrove forest located in the southern Firth of Thames, Aotearoa, New Zealand. This study quantifies the increasing establishment density and survival probability of mangrove seedlings from the lower-elevated unvegetated intertidal flat toward the higher-elevated mature mangrove forest. Three cross-shore zones with distinctive seedling dynamics were identified: (a) a zone with daily tidal inundation where seedling dynamics are episodic and limited by the dispersal of individual propagules that rapidly anchor to the substrate by root growth, (b) a zone with daily to bi-weekly tidal inundation where seedling dynamics respond to variations in spring-neap tidal cycles and, (c) a zone with less than bi-weekly inundation where seedling dynamics are governed by high propagule supply and seedling survival probability. The seedling establishment density and survival probability are dominated by annual extremes in tidal hydroperiod and bed shear stresses, respectively. The obtained parameterizations can be used to incorporate seedling dynamics in decadal-timescale mangrove forest development models that are instrumental for mangrove management and restoration.</p>\",\"PeriodicalId\":15887,\"journal\":{\"name\":\"Journal of Geophysical Research: Earth Surface\",\"volume\":\"129 5\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JF007664\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geophysical Research: Earth Surface\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2024JF007664\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Earth Surface","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JF007664","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

红树林的发展关键取决于幼苗的建立和存活。人们对水位、波浪和床面动态如何影响红树林幼苗的生长过程的机理认识正在不断加深。然而,人们对红树林不同海拔梯度的水位、波浪和床面动态的时空变化如何促进/限制幼苗动态变化知之甚少。在这项研究中,一个新的幼苗建立和生长模型被集成到一个基于过程的水动力和形态动力学数值模型中。该生物物理模型被应用于新西兰奥特亚罗瓦泰晤士湾南部的边缘红树林。这项研究量化了红树林幼苗从海拔较低的无植被潮间带平地向海拔较高的成熟红树林方向生长的密度和存活概率。研究确定了三个具有独特幼苗动态的跨海岸带:(a) 每天都有潮汐淹没的区域,该区域的幼苗动态是偶发性的,受限于单个繁殖体的传播,这些繁殖体通过根系生长迅速固定在基质上;(b) 每天至每两周都有潮汐淹没的区域,该区域的幼苗动态响应春-夏潮汐周期的变化;(c) 潮汐淹没少于每两周一次的区域,该区域的幼苗动态受制于高繁殖体供应量和幼苗存活概率。育苗密度和存活概率分别受潮汐水文周期和海床剪应力的年度极端值的支配。所获得的参数可用于将幼苗动态纳入十年时间尺度的红树林发展模型,这对红树林的管理和恢复至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Biophysical Modeling of Mangrove Seedling Establishment and Survival Across an Elevation Gradient With Forest Zones

Mangrove forest development critically depends on the establishment and survival of seedlings. Mechanistic insights into how water levels, waves and bed level dynamics influence the establishment process of individual mangrove seedlings are increasing. However, little is known about how spatial and temporal changes in water levels, waves and bed level dynamics across elevation gradients in mangrove forests facilitate/limit seedling dynamics. For this study, a new seedling establishment and growth model was integrated into a process-based hydrodynamic and morphodynamic numerical model. This biophysical model was applied to a fringing mangrove forest located in the southern Firth of Thames, Aotearoa, New Zealand. This study quantifies the increasing establishment density and survival probability of mangrove seedlings from the lower-elevated unvegetated intertidal flat toward the higher-elevated mature mangrove forest. Three cross-shore zones with distinctive seedling dynamics were identified: (a) a zone with daily tidal inundation where seedling dynamics are episodic and limited by the dispersal of individual propagules that rapidly anchor to the substrate by root growth, (b) a zone with daily to bi-weekly tidal inundation where seedling dynamics respond to variations in spring-neap tidal cycles and, (c) a zone with less than bi-weekly inundation where seedling dynamics are governed by high propagule supply and seedling survival probability. The seedling establishment density and survival probability are dominated by annual extremes in tidal hydroperiod and bed shear stresses, respectively. The obtained parameterizations can be used to incorporate seedling dynamics in decadal-timescale mangrove forest development models that are instrumental for mangrove management and restoration.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Geophysical Research: Earth Surface
Journal of Geophysical Research: Earth Surface Earth and Planetary Sciences-Earth-Surface Processes
CiteScore
6.30
自引率
10.30%
发文量
162
期刊最新文献
Field Validation of the Superelevation Method for Debris-Flow Velocity Estimation Using High-Resolution Lidar and UAV Data Influence of Lithology and Biota on Stream Erosivity and Drainage Density in a Semi-Arid Landscape, Central Chile Erosional Response to Pleistocene Climate Changes in the Brazilian Highlands Dynamic Controls on the Asymmetry of Mouth Bars: Role of Alongshore Currents Issue Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1