火星高层大气分子氧的昼夜差异

IF 3.9 1区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Journal of Geophysical Research: Planets Pub Date : 2024-05-15 DOI:10.1029/2024JE008322
S. Gupta, R. V. Yelle, N. M. Schneider, S. K. Jain, A. S. Braude, L. Verdier, F. Montmessin, H. Nakagawa, M. Mayyasi, J. Deighan, S. M. Curry
{"title":"火星高层大气分子氧的昼夜差异","authors":"S. Gupta,&nbsp;R. V. Yelle,&nbsp;N. M. Schneider,&nbsp;S. K. Jain,&nbsp;A. S. Braude,&nbsp;L. Verdier,&nbsp;F. Montmessin,&nbsp;H. Nakagawa,&nbsp;M. Mayyasi,&nbsp;J. Deighan,&nbsp;S. M. Curry","doi":"10.1029/2024JE008322","DOIUrl":null,"url":null,"abstract":"<p>We use the extensive stellar occultation data set of the Imaging Ultraviolet Spectrograph aboard the Mars Atmosphere and Volatile EvolutioN spacecraft to determine the first quantification of vertical variation in O<sub>2</sub> mole fraction separately for day and night in the ∼90–130 km altitude range. The upper atmospheric O<sub>2</sub> variation is expected to be due to the interplay between diffusion and advection because of its long photochemical lifetime. It is therefore a useful tracer of the state of atmospheric mixing and circulation. The altitude-averaged mixing ratio is measured to be 2.69(±0.03) × 10<sup>−3</sup> for the nightside and 2.05(±0.03) × 10<sup>−3</sup> for the dayside. The average O<sub>2</sub> mole fraction for day and night are nearly identical below 105 km, consistent with the value of 1.61 × 10<sup>−3</sup> derived from the Mars Curiosity Rover/Sample Analysis at Mars near-surface measurements. At higher altitudes, dominated by molecular diffusive separation, the measured O<sub>2</sub> mole fraction demonstrates a vertical gradient with a local time dependence. The nightside mole fraction is a factor of 1.37 ± 0.04 larger than the dayside value at ∼125 km. This nightside enhancement is explained in terms of the relative role of solar-driven rapid horizontal winds at high altitudes and slower vertical diffusion, resulting in a nightside (dayside) downward (upward) diffusive flux. Using the 1-D diffusion model, the measured profiles correspond to a vertical eddy diffusion coefficient <i>K</i> = 3.5(±1.5) × 10<sup>6</sup> <i>cm</i><sup>2</sup>/<i>s</i>. The Mars Climate Database predicts comparable but lower day-night differences in oxygen mole fraction due to an overestimated <i>K</i> = 7.0(±1.0) × 10<sup>6</sup> <i>cm</i><sup>2</sup>/<i>s</i>, which affects atmospheric mixing as well as the rate of atmospheric escape to space.</p>","PeriodicalId":16101,"journal":{"name":"Journal of Geophysical Research: Planets","volume":null,"pages":null},"PeriodicalIF":3.9000,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Day/Night Differences in Molecular Oxygen in the Martian Upper Atmosphere\",\"authors\":\"S. Gupta,&nbsp;R. V. Yelle,&nbsp;N. M. Schneider,&nbsp;S. K. Jain,&nbsp;A. S. Braude,&nbsp;L. Verdier,&nbsp;F. Montmessin,&nbsp;H. Nakagawa,&nbsp;M. Mayyasi,&nbsp;J. Deighan,&nbsp;S. M. Curry\",\"doi\":\"10.1029/2024JE008322\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We use the extensive stellar occultation data set of the Imaging Ultraviolet Spectrograph aboard the Mars Atmosphere and Volatile EvolutioN spacecraft to determine the first quantification of vertical variation in O<sub>2</sub> mole fraction separately for day and night in the ∼90–130 km altitude range. The upper atmospheric O<sub>2</sub> variation is expected to be due to the interplay between diffusion and advection because of its long photochemical lifetime. It is therefore a useful tracer of the state of atmospheric mixing and circulation. The altitude-averaged mixing ratio is measured to be 2.69(±0.03) × 10<sup>−3</sup> for the nightside and 2.05(±0.03) × 10<sup>−3</sup> for the dayside. The average O<sub>2</sub> mole fraction for day and night are nearly identical below 105 km, consistent with the value of 1.61 × 10<sup>−3</sup> derived from the Mars Curiosity Rover/Sample Analysis at Mars near-surface measurements. At higher altitudes, dominated by molecular diffusive separation, the measured O<sub>2</sub> mole fraction demonstrates a vertical gradient with a local time dependence. The nightside mole fraction is a factor of 1.37 ± 0.04 larger than the dayside value at ∼125 km. This nightside enhancement is explained in terms of the relative role of solar-driven rapid horizontal winds at high altitudes and slower vertical diffusion, resulting in a nightside (dayside) downward (upward) diffusive flux. Using the 1-D diffusion model, the measured profiles correspond to a vertical eddy diffusion coefficient <i>K</i> = 3.5(±1.5) × 10<sup>6</sup> <i>cm</i><sup>2</sup>/<i>s</i>. The Mars Climate Database predicts comparable but lower day-night differences in oxygen mole fraction due to an overestimated <i>K</i> = 7.0(±1.0) × 10<sup>6</sup> <i>cm</i><sup>2</sup>/<i>s</i>, which affects atmospheric mixing as well as the rate of atmospheric escape to space.</p>\",\"PeriodicalId\":16101,\"journal\":{\"name\":\"Journal of Geophysical Research: Planets\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geophysical Research: Planets\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2024JE008322\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Planets","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JE008322","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

我们利用 "火星大气与挥发演化 "航天器上的成像紫外摄谱仪的大量恒星掩星数据集,首次确定了 ∼90-130 公里高度范围内昼夜二氧化氮摩尔分数垂直变化的数量。由于氧气的光化学寿命较长,预计高层大气中氧气的变化是由于扩散和平流之间的相互作用造成的。因此,它是大气混合和环流状态的有用示踪剂。测得的高度平均混合比为:夜间 2.69(±0.03)×10-3,白天 2.05(±0.03)×10-3。在 105 公里以下,昼夜的平均 O2 摩尔分数几乎相同,这与好奇号火星车/火星近地面样本分析测量得出的 1.61 × 10-3 值一致。在高海拔地区,由于分子扩散分离的作用,测得的氧气分子分数呈现出垂直梯度,并与局部时间相关。在 ∼125 km 处,夜间的分子分数比白天的数值大 1.37 ± 0.04 倍。夜侧摩尔分数的增加可以用太阳驱动的高空快速水平风和较慢的垂直扩散的相对作用来解释,这导致了夜侧(日侧)向下(向上)的扩散通量。利用一维扩散模型,测得的剖面对应于垂直涡扩散系数 K = 3.5(±1.5) × 106 cm2/s。根据火星气候数据库的预测,氧分子分数的昼夜差异相当但较小,原因是高估了 K = 7.0(±1.0) × 106 cm2/s,这影响了大气混合以及大气逃逸到太空的速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Day/Night Differences in Molecular Oxygen in the Martian Upper Atmosphere

We use the extensive stellar occultation data set of the Imaging Ultraviolet Spectrograph aboard the Mars Atmosphere and Volatile EvolutioN spacecraft to determine the first quantification of vertical variation in O2 mole fraction separately for day and night in the ∼90–130 km altitude range. The upper atmospheric O2 variation is expected to be due to the interplay between diffusion and advection because of its long photochemical lifetime. It is therefore a useful tracer of the state of atmospheric mixing and circulation. The altitude-averaged mixing ratio is measured to be 2.69(±0.03) × 10−3 for the nightside and 2.05(±0.03) × 10−3 for the dayside. The average O2 mole fraction for day and night are nearly identical below 105 km, consistent with the value of 1.61 × 10−3 derived from the Mars Curiosity Rover/Sample Analysis at Mars near-surface measurements. At higher altitudes, dominated by molecular diffusive separation, the measured O2 mole fraction demonstrates a vertical gradient with a local time dependence. The nightside mole fraction is a factor of 1.37 ± 0.04 larger than the dayside value at ∼125 km. This nightside enhancement is explained in terms of the relative role of solar-driven rapid horizontal winds at high altitudes and slower vertical diffusion, resulting in a nightside (dayside) downward (upward) diffusive flux. Using the 1-D diffusion model, the measured profiles correspond to a vertical eddy diffusion coefficient K = 3.5(±1.5) × 106 cm2/s. The Mars Climate Database predicts comparable but lower day-night differences in oxygen mole fraction due to an overestimated K = 7.0(±1.0) × 106 cm2/s, which affects atmospheric mixing as well as the rate of atmospheric escape to space.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Geophysical Research: Planets
Journal of Geophysical Research: Planets Earth and Planetary Sciences-Earth and Planetary Sciences (miscellaneous)
CiteScore
8.00
自引率
27.10%
发文量
254
期刊介绍: The Journal of Geophysical Research Planets is dedicated to the publication of new and original research in the broad field of planetary science. Manuscripts concerning planetary geology, geophysics, geochemistry, atmospheres, and dynamics are appropriate for the journal when they increase knowledge about the processes that affect Solar System objects. Manuscripts concerning other planetary systems, exoplanets or Earth are welcome when presented in a comparative planetology perspective. Studies in the field of astrobiology will be considered when they have immediate consequences for the interpretation of planetary data. JGR: Planets does not publish manuscripts that deal with future missions and instrumentation, nor those that are primarily of an engineering interest. Instrument, calibration or data processing papers may be appropriate for the journal, but only when accompanied by scientific analysis and interpretation that increases understanding of the studied object. A manuscript that describes a new method or technique would be acceptable for JGR: Planets if it contained new and relevant scientific results obtained using the method. Review articles are generally not appropriate for JGR: Planets, but they may be considered if they form an integral part of a special issue.
期刊最新文献
Vapor Condensates on the Most Pristine Black Beads From a Clod in Apollo Drive Tube 73001: Discovery of Lunar NaCl Nanocrystals Issue Information The Thermal Structure and Composition of Jupiter's Great Red Spot From JWST/MIRI Observations of Water Frost on Mars With THEMIS: Application to the Presence of Brines and the Stability of (Sub)Surface Water Ice Likely Ferromagnetic Minerals Identified by the Perseverance Rover and Implications for Future Paleomagnetic Analyses of Returned Martian Samples
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1