{"title":"粉煤灰增强木质聚丙烯复合材料的特性分析","authors":"Memiş Akkuş","doi":"10.1177/08927057241254752","DOIUrl":null,"url":null,"abstract":"In this study, fly ash, which is released as waste from thermal power plants and has negative effects on the environment, was evaluated as a filler in wood-plastic composite materials (WPC). For this purpose, inorganic fly ash from thermal power plants was mixed with polypropylene (PP) thermoplastic polymer at 10%, 20%, 30%, 40%, and 50% by extrusion method instead of wood flour used in wood plastic composite materials. Maleic anhydride-treated polypropylene (MAPP) was used to strengthen the bonding during WPC production. The material mixed in extrusion was passed through a crusher and turned into pellets. Test samples were prepared using injection molding of pelletized WPC material. Density, thickness swelling, water absorption, modulus of rupture, impact strength, modulus of elasticity in bending, tensile strength, janka hardness, differential scanning calorimetry (DSC), and thermogravimetric analyses (TGA) were performed on the prepared test samples. The results indicated that as the amount of fly ash used in the wood-plastic composite material increases, the density increases but the thermal degradation temperature of the material, water uptake, the swelling ratio to its thickness, tensile strength, impact strength, janka hardness, modulus of rupture, and modulus of elasticity decrease.","PeriodicalId":17446,"journal":{"name":"Journal of Thermoplastic Composite Materials","volume":"33 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characterization of fly ash reinforced wood polypropylene composites\",\"authors\":\"Memiş Akkuş\",\"doi\":\"10.1177/08927057241254752\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, fly ash, which is released as waste from thermal power plants and has negative effects on the environment, was evaluated as a filler in wood-plastic composite materials (WPC). For this purpose, inorganic fly ash from thermal power plants was mixed with polypropylene (PP) thermoplastic polymer at 10%, 20%, 30%, 40%, and 50% by extrusion method instead of wood flour used in wood plastic composite materials. Maleic anhydride-treated polypropylene (MAPP) was used to strengthen the bonding during WPC production. The material mixed in extrusion was passed through a crusher and turned into pellets. Test samples were prepared using injection molding of pelletized WPC material. Density, thickness swelling, water absorption, modulus of rupture, impact strength, modulus of elasticity in bending, tensile strength, janka hardness, differential scanning calorimetry (DSC), and thermogravimetric analyses (TGA) were performed on the prepared test samples. The results indicated that as the amount of fly ash used in the wood-plastic composite material increases, the density increases but the thermal degradation temperature of the material, water uptake, the swelling ratio to its thickness, tensile strength, impact strength, janka hardness, modulus of rupture, and modulus of elasticity decrease.\",\"PeriodicalId\":17446,\"journal\":{\"name\":\"Journal of Thermoplastic Composite Materials\",\"volume\":\"33 1\",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Thermoplastic Composite Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1177/08927057241254752\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, COMPOSITES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Thermoplastic Composite Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1177/08927057241254752","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
Characterization of fly ash reinforced wood polypropylene composites
In this study, fly ash, which is released as waste from thermal power plants and has negative effects on the environment, was evaluated as a filler in wood-plastic composite materials (WPC). For this purpose, inorganic fly ash from thermal power plants was mixed with polypropylene (PP) thermoplastic polymer at 10%, 20%, 30%, 40%, and 50% by extrusion method instead of wood flour used in wood plastic composite materials. Maleic anhydride-treated polypropylene (MAPP) was used to strengthen the bonding during WPC production. The material mixed in extrusion was passed through a crusher and turned into pellets. Test samples were prepared using injection molding of pelletized WPC material. Density, thickness swelling, water absorption, modulus of rupture, impact strength, modulus of elasticity in bending, tensile strength, janka hardness, differential scanning calorimetry (DSC), and thermogravimetric analyses (TGA) were performed on the prepared test samples. The results indicated that as the amount of fly ash used in the wood-plastic composite material increases, the density increases but the thermal degradation temperature of the material, water uptake, the swelling ratio to its thickness, tensile strength, impact strength, janka hardness, modulus of rupture, and modulus of elasticity decrease.
期刊介绍:
The Journal of Thermoplastic Composite Materials is a fully peer-reviewed international journal that publishes original research and review articles on polymers, nanocomposites, and particulate-, discontinuous-, and continuous-fiber-reinforced materials in the areas of processing, materials science, mechanics, durability, design, non destructive evaluation and manufacturing science. This journal is a member of the Committee on Publication Ethics (COPE).