Abbas Farhat, Li-Hua Luu, Alexis Doghmane, Pablo Cuéllar, Nadia Benahmed, Torsten Wichtmann, Pierre Philippe
{"title":"人工胶结颗粒材料的微观和宏观力学特征","authors":"Abbas Farhat, Li-Hua Luu, Alexis Doghmane, Pablo Cuéllar, Nadia Benahmed, Torsten Wichtmann, Pierre Philippe","doi":"10.1007/s10035-024-01426-2","DOIUrl":null,"url":null,"abstract":"<div><p>The focus of this study is the experimental characterization of cemented granular materials, with the aim of identifying the microscopic properties of the solid bonds and describing the extension to macroscopic mechanical strength of cemented samples. We chose to use artificially bonded granular materials, made of glass beads connected by solid paraffin bridges. The results of several sets of laboratory tests at different scales are presented and discussed. Micromechanical tests investigate the yield strength of single solid bonds between particles under traction, shearing, bending and torsion loading, as a function of variations in particle size, surface texture and binder content. Macro-scale tensile tests on cemented samples explore then the scale transition, including influence of confining walls through homothetic variations of the sample size. Despite the large statistical dispersion of the results, it was possible to derive and validate experimentally an analytical expression for micro tensile yield force as a function of the binder content, coordination number and grain diameter. In view of the data, an adhesive bond strength at the contact between bead and solid bond is deduced with very good accuracy and it is even reasonable to assume that the other threshold values (shear force, bending and torsion moments) are simply proportional to the tensile yield, thus providing a comprehensive 3D model of cemented bond. However, the considerable dispersion of the data at the sample scale prevents validation of the extended model for macroscopic yield stress. A final discussion examines the various factors that may explain intrinsic variability. By comparison with other more realistic systems studied in the literature in the context of bio-cementation, our artificial material nevertheless appears suitable for representing a cemented granular material. Being easy to implement, it could thus enable the calibration of discrete cohesion models for simulation of practical applications.</p></div>","PeriodicalId":49323,"journal":{"name":"Granular Matter","volume":"26 3","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Micro and macro mechanical characterization of artificial cemented granular materials\",\"authors\":\"Abbas Farhat, Li-Hua Luu, Alexis Doghmane, Pablo Cuéllar, Nadia Benahmed, Torsten Wichtmann, Pierre Philippe\",\"doi\":\"10.1007/s10035-024-01426-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The focus of this study is the experimental characterization of cemented granular materials, with the aim of identifying the microscopic properties of the solid bonds and describing the extension to macroscopic mechanical strength of cemented samples. We chose to use artificially bonded granular materials, made of glass beads connected by solid paraffin bridges. The results of several sets of laboratory tests at different scales are presented and discussed. Micromechanical tests investigate the yield strength of single solid bonds between particles under traction, shearing, bending and torsion loading, as a function of variations in particle size, surface texture and binder content. Macro-scale tensile tests on cemented samples explore then the scale transition, including influence of confining walls through homothetic variations of the sample size. Despite the large statistical dispersion of the results, it was possible to derive and validate experimentally an analytical expression for micro tensile yield force as a function of the binder content, coordination number and grain diameter. In view of the data, an adhesive bond strength at the contact between bead and solid bond is deduced with very good accuracy and it is even reasonable to assume that the other threshold values (shear force, bending and torsion moments) are simply proportional to the tensile yield, thus providing a comprehensive 3D model of cemented bond. However, the considerable dispersion of the data at the sample scale prevents validation of the extended model for macroscopic yield stress. A final discussion examines the various factors that may explain intrinsic variability. By comparison with other more realistic systems studied in the literature in the context of bio-cementation, our artificial material nevertheless appears suitable for representing a cemented granular material. Being easy to implement, it could thus enable the calibration of discrete cohesion models for simulation of practical applications.</p></div>\",\"PeriodicalId\":49323,\"journal\":{\"name\":\"Granular Matter\",\"volume\":\"26 3\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Granular Matter\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10035-024-01426-2\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Granular Matter","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10035-024-01426-2","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Micro and macro mechanical characterization of artificial cemented granular materials
The focus of this study is the experimental characterization of cemented granular materials, with the aim of identifying the microscopic properties of the solid bonds and describing the extension to macroscopic mechanical strength of cemented samples. We chose to use artificially bonded granular materials, made of glass beads connected by solid paraffin bridges. The results of several sets of laboratory tests at different scales are presented and discussed. Micromechanical tests investigate the yield strength of single solid bonds between particles under traction, shearing, bending and torsion loading, as a function of variations in particle size, surface texture and binder content. Macro-scale tensile tests on cemented samples explore then the scale transition, including influence of confining walls through homothetic variations of the sample size. Despite the large statistical dispersion of the results, it was possible to derive and validate experimentally an analytical expression for micro tensile yield force as a function of the binder content, coordination number and grain diameter. In view of the data, an adhesive bond strength at the contact between bead and solid bond is deduced with very good accuracy and it is even reasonable to assume that the other threshold values (shear force, bending and torsion moments) are simply proportional to the tensile yield, thus providing a comprehensive 3D model of cemented bond. However, the considerable dispersion of the data at the sample scale prevents validation of the extended model for macroscopic yield stress. A final discussion examines the various factors that may explain intrinsic variability. By comparison with other more realistic systems studied in the literature in the context of bio-cementation, our artificial material nevertheless appears suitable for representing a cemented granular material. Being easy to implement, it could thus enable the calibration of discrete cohesion models for simulation of practical applications.
期刊介绍:
Although many phenomena observed in granular materials are still not yet fully understood, important contributions have been made to further our understanding using modern tools from statistical mechanics, micro-mechanics, and computational science.
These modern tools apply to disordered systems, phase transitions, instabilities or intermittent behavior and the performance of discrete particle simulations.
>> Until now, however, many of these results were only to be found scattered throughout the literature. Physicists are often unaware of the theories and results published by engineers or other fields - and vice versa.
The journal Granular Matter thus serves as an interdisciplinary platform of communication among researchers of various disciplines who are involved in the basic research on granular media. It helps to establish a common language and gather articles under one single roof that up to now have been spread over many journals in a variety of fields. Notwithstanding, highly applied or technical work is beyond the scope of this journal.