{"title":"利用 Kolmogorov-Arnold 网络建立柔性 EHD 泵的预测模型","authors":"Yanhong Peng, Miao He, Fangchao Hu, Zebing Mao, Xia Huang, Jun Ding","doi":"arxiv-2405.07488","DOIUrl":null,"url":null,"abstract":"We present a novel approach to predicting the pressure and flow rate of\nflexible electrohydrodynamic pumps using the Kolmogorov-Arnold Network.\nInspired by the Kolmogorov-Arnold representation theorem, KAN replaces fixed\nactivation functions with learnable spline-based activation functions, enabling\nit to approximate complex nonlinear functions more effectively than traditional\nmodels like Multi-Layer Perceptron and Random Forest. We evaluated KAN on a\ndataset of flexible EHD pump parameters and compared its performance against\nRF, and MLP models. KAN achieved superior predictive accuracy, with Mean\nSquared Errors of 12.186 and 0.001 for pressure and flow rate predictions,\nrespectively. The symbolic formulas extracted from KAN provided insights into\nthe nonlinear relationships between input parameters and pump performance.\nThese findings demonstrate that KAN offers exceptional accuracy and\ninterpretability, making it a promising alternative for predictive modeling in\nelectrohydrodynamic pumping.","PeriodicalId":501033,"journal":{"name":"arXiv - CS - Symbolic Computation","volume":"87 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predictive Modeling of Flexible EHD Pumps using Kolmogorov-Arnold Networks\",\"authors\":\"Yanhong Peng, Miao He, Fangchao Hu, Zebing Mao, Xia Huang, Jun Ding\",\"doi\":\"arxiv-2405.07488\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a novel approach to predicting the pressure and flow rate of\\nflexible electrohydrodynamic pumps using the Kolmogorov-Arnold Network.\\nInspired by the Kolmogorov-Arnold representation theorem, KAN replaces fixed\\nactivation functions with learnable spline-based activation functions, enabling\\nit to approximate complex nonlinear functions more effectively than traditional\\nmodels like Multi-Layer Perceptron and Random Forest. We evaluated KAN on a\\ndataset of flexible EHD pump parameters and compared its performance against\\nRF, and MLP models. KAN achieved superior predictive accuracy, with Mean\\nSquared Errors of 12.186 and 0.001 for pressure and flow rate predictions,\\nrespectively. The symbolic formulas extracted from KAN provided insights into\\nthe nonlinear relationships between input parameters and pump performance.\\nThese findings demonstrate that KAN offers exceptional accuracy and\\ninterpretability, making it a promising alternative for predictive modeling in\\nelectrohydrodynamic pumping.\",\"PeriodicalId\":501033,\"journal\":{\"name\":\"arXiv - CS - Symbolic Computation\",\"volume\":\"87 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Symbolic Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2405.07488\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Symbolic Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2405.07488","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
受 Kolmogorov-Arnold 表示定理的启发,KAN 用可学习的基于样条的激活函数取代了固定的激活函数,使其能够比多层感知器和随机森林等传统模型更有效地逼近复杂的非线性函数。我们在一组灵活的 EHD 泵参数上对 KAN 进行了评估,并将其性能与 RF 和 MLP 模型进行了比较。KAN 的预测准确性更胜一筹,压力和流量预测的均方误差分别为 12.186 和 0.001。从 KAN 中提取的符号公式深入揭示了输入参数与泵性能之间的非线性关系。这些研究结果表明,KAN 具有极高的准确性和可解释性,是电流体动力泵预测建模的理想选择。
Predictive Modeling of Flexible EHD Pumps using Kolmogorov-Arnold Networks
We present a novel approach to predicting the pressure and flow rate of
flexible electrohydrodynamic pumps using the Kolmogorov-Arnold Network.
Inspired by the Kolmogorov-Arnold representation theorem, KAN replaces fixed
activation functions with learnable spline-based activation functions, enabling
it to approximate complex nonlinear functions more effectively than traditional
models like Multi-Layer Perceptron and Random Forest. We evaluated KAN on a
dataset of flexible EHD pump parameters and compared its performance against
RF, and MLP models. KAN achieved superior predictive accuracy, with Mean
Squared Errors of 12.186 and 0.001 for pressure and flow rate predictions,
respectively. The symbolic formulas extracted from KAN provided insights into
the nonlinear relationships between input parameters and pump performance.
These findings demonstrate that KAN offers exceptional accuracy and
interpretability, making it a promising alternative for predictive modeling in
electrohydrodynamic pumping.