利用 Kolmogorov-Arnold 网络建立柔性 EHD 泵的预测模型

Yanhong Peng, Miao He, Fangchao Hu, Zebing Mao, Xia Huang, Jun Ding
{"title":"利用 Kolmogorov-Arnold 网络建立柔性 EHD 泵的预测模型","authors":"Yanhong Peng, Miao He, Fangchao Hu, Zebing Mao, Xia Huang, Jun Ding","doi":"arxiv-2405.07488","DOIUrl":null,"url":null,"abstract":"We present a novel approach to predicting the pressure and flow rate of\nflexible electrohydrodynamic pumps using the Kolmogorov-Arnold Network.\nInspired by the Kolmogorov-Arnold representation theorem, KAN replaces fixed\nactivation functions with learnable spline-based activation functions, enabling\nit to approximate complex nonlinear functions more effectively than traditional\nmodels like Multi-Layer Perceptron and Random Forest. We evaluated KAN on a\ndataset of flexible EHD pump parameters and compared its performance against\nRF, and MLP models. KAN achieved superior predictive accuracy, with Mean\nSquared Errors of 12.186 and 0.001 for pressure and flow rate predictions,\nrespectively. The symbolic formulas extracted from KAN provided insights into\nthe nonlinear relationships between input parameters and pump performance.\nThese findings demonstrate that KAN offers exceptional accuracy and\ninterpretability, making it a promising alternative for predictive modeling in\nelectrohydrodynamic pumping.","PeriodicalId":501033,"journal":{"name":"arXiv - CS - Symbolic Computation","volume":"87 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predictive Modeling of Flexible EHD Pumps using Kolmogorov-Arnold Networks\",\"authors\":\"Yanhong Peng, Miao He, Fangchao Hu, Zebing Mao, Xia Huang, Jun Ding\",\"doi\":\"arxiv-2405.07488\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a novel approach to predicting the pressure and flow rate of\\nflexible electrohydrodynamic pumps using the Kolmogorov-Arnold Network.\\nInspired by the Kolmogorov-Arnold representation theorem, KAN replaces fixed\\nactivation functions with learnable spline-based activation functions, enabling\\nit to approximate complex nonlinear functions more effectively than traditional\\nmodels like Multi-Layer Perceptron and Random Forest. We evaluated KAN on a\\ndataset of flexible EHD pump parameters and compared its performance against\\nRF, and MLP models. KAN achieved superior predictive accuracy, with Mean\\nSquared Errors of 12.186 and 0.001 for pressure and flow rate predictions,\\nrespectively. The symbolic formulas extracted from KAN provided insights into\\nthe nonlinear relationships between input parameters and pump performance.\\nThese findings demonstrate that KAN offers exceptional accuracy and\\ninterpretability, making it a promising alternative for predictive modeling in\\nelectrohydrodynamic pumping.\",\"PeriodicalId\":501033,\"journal\":{\"name\":\"arXiv - CS - Symbolic Computation\",\"volume\":\"87 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Symbolic Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2405.07488\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Symbolic Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2405.07488","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

受 Kolmogorov-Arnold 表示定理的启发,KAN 用可学习的基于样条的激活函数取代了固定的激活函数,使其能够比多层感知器和随机森林等传统模型更有效地逼近复杂的非线性函数。我们在一组灵活的 EHD 泵参数上对 KAN 进行了评估,并将其性能与 RF 和 MLP 模型进行了比较。KAN 的预测准确性更胜一筹,压力和流量预测的均方误差分别为 12.186 和 0.001。从 KAN 中提取的符号公式深入揭示了输入参数与泵性能之间的非线性关系。这些研究结果表明,KAN 具有极高的准确性和可解释性,是电流体动力泵预测建模的理想选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Predictive Modeling of Flexible EHD Pumps using Kolmogorov-Arnold Networks
We present a novel approach to predicting the pressure and flow rate of flexible electrohydrodynamic pumps using the Kolmogorov-Arnold Network. Inspired by the Kolmogorov-Arnold representation theorem, KAN replaces fixed activation functions with learnable spline-based activation functions, enabling it to approximate complex nonlinear functions more effectively than traditional models like Multi-Layer Perceptron and Random Forest. We evaluated KAN on a dataset of flexible EHD pump parameters and compared its performance against RF, and MLP models. KAN achieved superior predictive accuracy, with Mean Squared Errors of 12.186 and 0.001 for pressure and flow rate predictions, respectively. The symbolic formulas extracted from KAN provided insights into the nonlinear relationships between input parameters and pump performance. These findings demonstrate that KAN offers exceptional accuracy and interpretability, making it a promising alternative for predictive modeling in electrohydrodynamic pumping.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Synthesizing Evolving Symbolic Representations for Autonomous Systems Introducing Quantification into a Hierarchical Graph Rewriting Language Towards Verified Polynomial Factorisation Symbolic Regression with a Learned Concept Library Active Symbolic Discovery of Ordinary Differential Equations via Phase Portrait Sketching
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1