利用强制对流实现中空液滴的无容器凝固

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2024-05-09 DOI:10.1007/s12217-024-10112-0
Nang X. Ho, Binh D. Pham, Truong V. Vu
{"title":"利用强制对流实现中空液滴的无容器凝固","authors":"Nang X. Ho,&nbsp;Binh D. Pham,&nbsp;Truong V. Vu","doi":"10.1007/s12217-024-10112-0","DOIUrl":null,"url":null,"abstract":"<div><p>The phenomenon of solidified suspended hollow droplets is often run into industry and nature. In this study, we focus on the containerless solidification process of a hollow droplet undergoing a forcing flow. We found that when the radius ratio (<i>R</i><sub><i>io</i></sub>) varied with different growth angles, it changes the trend of the solidification rate of the solidifying front over time. Specifically, with the growth angle of 5° (i.e., <i>Φ</i><sub><i>gr</i></sub> = 5°), the suspended hollow droplets finished solidification in almost the same time for <i>R</i><sub><i>io</i></sub> in the range of 0.2–0.7. When we increase the growth angle by 5°, i.e., <i>Φ</i><sub><i>gr</i></sub> = 10°, the solidification time increases with the increase of <i>R</i><sub><i>io</i></sub>. Also following the increase of <i>R</i><sub><i>io</i></sub>, this increase in the solidification time is even higher for the growth angle <i>Φ</i><sub><i>gr</i></sub> = 15°. The inlet temperature is also considered. Obviously, increasing the inlet temperature increases the solidification time of the hollow droplets. In addition, when the Reynolds number increases, the solidification time of the droplets also tends to increase. However, the increment of this trend is different under different temperatures of the forcing flow.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Containerless Solidification of a Hollow Droplet with Forced Convection\",\"authors\":\"Nang X. Ho,&nbsp;Binh D. Pham,&nbsp;Truong V. Vu\",\"doi\":\"10.1007/s12217-024-10112-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The phenomenon of solidified suspended hollow droplets is often run into industry and nature. In this study, we focus on the containerless solidification process of a hollow droplet undergoing a forcing flow. We found that when the radius ratio (<i>R</i><sub><i>io</i></sub>) varied with different growth angles, it changes the trend of the solidification rate of the solidifying front over time. Specifically, with the growth angle of 5° (i.e., <i>Φ</i><sub><i>gr</i></sub> = 5°), the suspended hollow droplets finished solidification in almost the same time for <i>R</i><sub><i>io</i></sub> in the range of 0.2–0.7. When we increase the growth angle by 5°, i.e., <i>Φ</i><sub><i>gr</i></sub> = 10°, the solidification time increases with the increase of <i>R</i><sub><i>io</i></sub>. Also following the increase of <i>R</i><sub><i>io</i></sub>, this increase in the solidification time is even higher for the growth angle <i>Φ</i><sub><i>gr</i></sub> = 15°. The inlet temperature is also considered. Obviously, increasing the inlet temperature increases the solidification time of the hollow droplets. In addition, when the Reynolds number increases, the solidification time of the droplets also tends to increase. However, the increment of this trend is different under different temperatures of the forcing flow.</p></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12217-024-10112-0\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s12217-024-10112-0","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

工业和自然界中经常会出现悬浮空心液滴凝固的现象。在这项研究中,我们重点研究了空心液滴在强制流作用下的无容器凝固过程。我们发现,当半径比(Rio)随不同的生长角变化时,会改变凝固前沿的凝固速率随时间变化的趋势。具体来说,当生长角为 5°(即 Φgr = 5°)时,当 Rio 在 0.2-0.7 范围内时,悬浮空心液滴在几乎相同的时间内完成凝固。当我们将生长角增加 5°,即 Φgr = 10°时,凝固时间随着 Rio 的增加而增加。同样,随着 Rio 的增加,在生长角 Φgr = 15° 时,凝固时间的增加幅度更大。还考虑了入口温度。很明显,提高入口温度会增加空心液滴的凝固时间。此外,当雷诺数增加时,液滴的凝固时间也有增加的趋势。然而,在不同的强制流温度下,这一趋势的增量是不同的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Containerless Solidification of a Hollow Droplet with Forced Convection

The phenomenon of solidified suspended hollow droplets is often run into industry and nature. In this study, we focus on the containerless solidification process of a hollow droplet undergoing a forcing flow. We found that when the radius ratio (Rio) varied with different growth angles, it changes the trend of the solidification rate of the solidifying front over time. Specifically, with the growth angle of 5° (i.e., Φgr = 5°), the suspended hollow droplets finished solidification in almost the same time for Rio in the range of 0.2–0.7. When we increase the growth angle by 5°, i.e., Φgr = 10°, the solidification time increases with the increase of Rio. Also following the increase of Rio, this increase in the solidification time is even higher for the growth angle Φgr = 15°. The inlet temperature is also considered. Obviously, increasing the inlet temperature increases the solidification time of the hollow droplets. In addition, when the Reynolds number increases, the solidification time of the droplets also tends to increase. However, the increment of this trend is different under different temperatures of the forcing flow.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Mentorship in academic musculoskeletal radiology: perspectives from a junior faculty member. Underlying synovial sarcoma undiagnosed for more than 20 years in a patient with regional pain: a case report. Sacrococcygeal chordoma with spontaneous regression due to a large hemorrhagic component. Associations of cumulative voriconazole dose, treatment duration, and alkaline phosphatase with voriconazole-induced periostitis. Can the presence of SLAP-5 lesions be predicted by using the critical shoulder angle in traumatic anterior shoulder instability?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1