国际空间站上的低温正十二烷液滴燃烧实验

IF 1.3 4区 工程技术 Q2 ENGINEERING, AEROSPACE Microgravity Science and Technology Pub Date : 2024-05-13 DOI:10.1007/s12217-024-10115-x
Daniel Dietrich, Timmothy Krause, Vedha Nayagam, Tanvir Farouk, Frederick Dryer, Forman Williams
{"title":"国际空间站上的低温正十二烷液滴燃烧实验","authors":"Daniel Dietrich, Timmothy Krause, Vedha Nayagam, Tanvir Farouk, Frederick Dryer, Forman Williams","doi":"10.1007/s12217-024-10115-x","DOIUrl":null,"url":null,"abstract":"<p>This paper presents data from large, isolated n-dodecane droplets burning in microgravity on the International Space Station, along with preliminary comparisons with numerical and analytic predictions indicating general agreement in trends. The tests involved were primarily in air (a few in reduced oxygen) at ambient pressures ranging from 0.50 to 5.0 atm. After ignition, the droplets burn with a hot flame that extinguishes when the radiant energy loss causes the flame temperature to drop below the hot-flame-required value. The total flame radiative loss at extinction is nearly independent of pressure, while the peak flame diameter prior to hot-flame extinction decreases with increasing pressure. The maximum hot-flame temperature, inferred from fiber-support radiative emisssions, decreases with increasing pressure, and the hot flames become dimmer with increasing pressure. At 1.0 atm and below there is a prolonged period of coolflame burning that ends with cool-flame extinction at a finite droplet size; the cool-flame-extinction droplet diameter increases and the cool-flame burning rate decreases with decreasing ambient pressure. Above 1.25 atm warm-flame burning and hot-flame re-ignitions become prevalent. At 5.0 atm, there is no abrupt hot-flame extinction with transition to a cool flame; the flame gradually gets dimmer, and the flame temperature decreases over a much longer time, the transition between hot-flame and warm-flame burning becoming almost undiscernible.</p>","PeriodicalId":707,"journal":{"name":"Microgravity Science and Technology","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Low Temperature n-Dodecane Droplet Combustion Experiments Aboard the International Space Station\",\"authors\":\"Daniel Dietrich, Timmothy Krause, Vedha Nayagam, Tanvir Farouk, Frederick Dryer, Forman Williams\",\"doi\":\"10.1007/s12217-024-10115-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper presents data from large, isolated n-dodecane droplets burning in microgravity on the International Space Station, along with preliminary comparisons with numerical and analytic predictions indicating general agreement in trends. The tests involved were primarily in air (a few in reduced oxygen) at ambient pressures ranging from 0.50 to 5.0 atm. After ignition, the droplets burn with a hot flame that extinguishes when the radiant energy loss causes the flame temperature to drop below the hot-flame-required value. The total flame radiative loss at extinction is nearly independent of pressure, while the peak flame diameter prior to hot-flame extinction decreases with increasing pressure. The maximum hot-flame temperature, inferred from fiber-support radiative emisssions, decreases with increasing pressure, and the hot flames become dimmer with increasing pressure. At 1.0 atm and below there is a prolonged period of coolflame burning that ends with cool-flame extinction at a finite droplet size; the cool-flame-extinction droplet diameter increases and the cool-flame burning rate decreases with decreasing ambient pressure. Above 1.25 atm warm-flame burning and hot-flame re-ignitions become prevalent. At 5.0 atm, there is no abrupt hot-flame extinction with transition to a cool flame; the flame gradually gets dimmer, and the flame temperature decreases over a much longer time, the transition between hot-flame and warm-flame burning becoming almost undiscernible.</p>\",\"PeriodicalId\":707,\"journal\":{\"name\":\"Microgravity Science and Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microgravity Science and Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s12217-024-10115-x\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microgravity Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12217-024-10115-x","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了在国际空间站上的微重力环境中燃烧的大型、孤立的正十二烷液滴的数据,以及与数值预测和分析预测的初步比较,结果表明两者的趋势基本一致。所涉及的测试主要在空气中进行(少数在还原氧中进行),环境压力从 0.50 到 5.0 atm 不等。点火后,液滴燃烧产生高温火焰,当辐射能损失导致火焰温度降至高温火焰要求值以下时,火焰熄灭。熄灭时的总火焰辐射损失几乎与压力无关,而热焰熄灭前的峰值火焰直径随着压力的增加而减小。根据纤维支撑辐射发射推断出的最大热焰温度随着压力的增加而降低,热焰随着压力的增加而变暗。在 1.0 atm 及以下,冷焰燃烧时间较长,最后以有限液滴大小的冷焰熄灭结束;冷焰熄灭液滴直径增大,冷焰燃烧速率随环境压力降低而降低。超过 1.25 atm 时,暖焰燃烧和热焰复燃变得普遍。在 5.0 atm 时,不会出现热焰突然熄灭并过渡到冷焰的情况;火焰会逐渐变暗,火焰温度会在更长的时间内下降,热焰燃烧和温焰燃烧之间的过渡几乎无法辨别。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Low Temperature n-Dodecane Droplet Combustion Experiments Aboard the International Space Station

This paper presents data from large, isolated n-dodecane droplets burning in microgravity on the International Space Station, along with preliminary comparisons with numerical and analytic predictions indicating general agreement in trends. The tests involved were primarily in air (a few in reduced oxygen) at ambient pressures ranging from 0.50 to 5.0 atm. After ignition, the droplets burn with a hot flame that extinguishes when the radiant energy loss causes the flame temperature to drop below the hot-flame-required value. The total flame radiative loss at extinction is nearly independent of pressure, while the peak flame diameter prior to hot-flame extinction decreases with increasing pressure. The maximum hot-flame temperature, inferred from fiber-support radiative emisssions, decreases with increasing pressure, and the hot flames become dimmer with increasing pressure. At 1.0 atm and below there is a prolonged period of coolflame burning that ends with cool-flame extinction at a finite droplet size; the cool-flame-extinction droplet diameter increases and the cool-flame burning rate decreases with decreasing ambient pressure. Above 1.25 atm warm-flame burning and hot-flame re-ignitions become prevalent. At 5.0 atm, there is no abrupt hot-flame extinction with transition to a cool flame; the flame gradually gets dimmer, and the flame temperature decreases over a much longer time, the transition between hot-flame and warm-flame burning becoming almost undiscernible.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Microgravity Science and Technology
Microgravity Science and Technology 工程技术-工程:宇航
CiteScore
3.50
自引率
44.40%
发文量
96
期刊介绍: Microgravity Science and Technology – An International Journal for Microgravity and Space Exploration Related Research is a is a peer-reviewed scientific journal concerned with all topics, experimental as well as theoretical, related to research carried out under conditions of altered gravity. Microgravity Science and Technology publishes papers dealing with studies performed on and prepared for platforms that provide real microgravity conditions (such as drop towers, parabolic flights, sounding rockets, reentry capsules and orbiting platforms), and on ground-based facilities aiming to simulate microgravity conditions on earth (such as levitrons, clinostats, random positioning machines, bed rest facilities, and micro-scale or neutral buoyancy facilities) or providing artificial gravity conditions (such as centrifuges). Data from preparatory tests, hardware and instrumentation developments, lessons learnt as well as theoretical gravity-related considerations are welcome. Included science disciplines with gravity-related topics are: − materials science − fluid mechanics − process engineering − physics − chemistry − heat and mass transfer − gravitational biology − radiation biology − exobiology and astrobiology − human physiology
期刊最新文献
Correlation Between Invariable Blood Proteins and Heart Rate Variability in Long-Duration Space Flights Numerical Investigation on Mechanism Analysis of Bubble Pinch-off Experimental Study on Startup Performance of a High-temperature Liquid Metal Heat Pipe with Fins Exploring the Frontier of Space Medicine: The Nexus of Bone Regeneration and Astronautic Health in Microgravity Conditions Study on the instability of FC-72 vapor–liquid interface in a rectangular channel under different gravity conditions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1