N Khan, D Kumar, V Kumar, Y Shemerliuk, S Selter, B Büchner, K Pal, S Aswartham, Pradeep Kumar
{"title":"(Ni x Fe1-x )2P2S6 二维范德华晶体中拓扑结构与反铁磁秩序的相互作用","authors":"N Khan, D Kumar, V Kumar, Y Shemerliuk, S Selter, B Büchner, K Pal, S Aswartham, Pradeep Kumar","doi":"10.1088/2053-1583/ad3e0a","DOIUrl":null,"url":null,"abstract":"The Mermin–Wagner theorem forbids spontaneous symmetry breaking of spins in one/two-dimensional (2D) systems at a finite temperature and rules out the stabilization of this ordered state. However, it does not apply to all types of phase transitions in low dimensions, such as the topologically ordered phase rigorously shown by Berezinskii–Kosterlitz–Thouless (BKT) and experimentally realized in very limited systems such as superfluids and superconducting thin films. Quasi-2D van der Waals magnets provide an ideal platform to investigate the fundamentals of low-dimensional magnetism. We explored the quasi-2D honeycomb antiferromagnetic single crystals of (Ni<italic toggle=\"yes\">\n<sub>x</sub>\n</italic>Fe<sub>1−<italic toggle=\"yes\">x</italic>\n</sub>)<sub>2</sub>P<sub>2</sub>S<sub>6</sub> (<italic toggle=\"yes\">x</italic> = 1, 0.7, 0.5, 0.3, and 0) using in-depth temperature-dependent Raman measurements supported by first-principles calculations of the phonon frequencies. Quite surprisingly, we observed renormalization of the phonon modes much below the long-range magnetic ordered temperature attributed to the topological ordered state, namely the BKT phase, which is also found to change as a function of doping. The extracted critical exponent of the order-parameter (spin–spin correlation length, <inline-formula>\n<tex-math><?CDATA $\\xi (T)$?></tex-math>\n<mml:math overflow=\"scroll\"><mml:mrow><mml:mi>ξ</mml:mi><mml:mo stretchy=\"false\">(</mml:mo><mml:mi>T</mml:mi><mml:mo stretchy=\"false\">)</mml:mo></mml:mrow></mml:math>\n<inline-graphic xlink:href=\"tdmad3e0aieqn1.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula>) evinces the signature of a topologically active state driven by vortex–antivortex excitations. As a function of doping, a tunable transition from paramagnetic to antiferromagnetic ordering is shown via phonons reflected in the strong renormalization of the self-energy parameters of the Raman active phonon modes. The extracted exchange parameter (<italic toggle=\"yes\">J</italic>) is found to vary by ∼100% by increasing the value of doping, ranging from ∼6 meV (for <italic toggle=\"yes\">x</italic> = 0.3) to 13 meV (for <italic toggle=\"yes\">x</italic> = 1).","PeriodicalId":6812,"journal":{"name":"2D Materials","volume":"87 1","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The interplay of topology and antiferromagnetic order in two-dimensional van der Waals crystals of (Ni x Fe1−x )2P2S6\",\"authors\":\"N Khan, D Kumar, V Kumar, Y Shemerliuk, S Selter, B Büchner, K Pal, S Aswartham, Pradeep Kumar\",\"doi\":\"10.1088/2053-1583/ad3e0a\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Mermin–Wagner theorem forbids spontaneous symmetry breaking of spins in one/two-dimensional (2D) systems at a finite temperature and rules out the stabilization of this ordered state. However, it does not apply to all types of phase transitions in low dimensions, such as the topologically ordered phase rigorously shown by Berezinskii–Kosterlitz–Thouless (BKT) and experimentally realized in very limited systems such as superfluids and superconducting thin films. Quasi-2D van der Waals magnets provide an ideal platform to investigate the fundamentals of low-dimensional magnetism. We explored the quasi-2D honeycomb antiferromagnetic single crystals of (Ni<italic toggle=\\\"yes\\\">\\n<sub>x</sub>\\n</italic>Fe<sub>1−<italic toggle=\\\"yes\\\">x</italic>\\n</sub>)<sub>2</sub>P<sub>2</sub>S<sub>6</sub> (<italic toggle=\\\"yes\\\">x</italic> = 1, 0.7, 0.5, 0.3, and 0) using in-depth temperature-dependent Raman measurements supported by first-principles calculations of the phonon frequencies. Quite surprisingly, we observed renormalization of the phonon modes much below the long-range magnetic ordered temperature attributed to the topological ordered state, namely the BKT phase, which is also found to change as a function of doping. The extracted critical exponent of the order-parameter (spin–spin correlation length, <inline-formula>\\n<tex-math><?CDATA $\\\\xi (T)$?></tex-math>\\n<mml:math overflow=\\\"scroll\\\"><mml:mrow><mml:mi>ξ</mml:mi><mml:mo stretchy=\\\"false\\\">(</mml:mo><mml:mi>T</mml:mi><mml:mo stretchy=\\\"false\\\">)</mml:mo></mml:mrow></mml:math>\\n<inline-graphic xlink:href=\\\"tdmad3e0aieqn1.gif\\\" xlink:type=\\\"simple\\\"></inline-graphic>\\n</inline-formula>) evinces the signature of a topologically active state driven by vortex–antivortex excitations. As a function of doping, a tunable transition from paramagnetic to antiferromagnetic ordering is shown via phonons reflected in the strong renormalization of the self-energy parameters of the Raman active phonon modes. The extracted exchange parameter (<italic toggle=\\\"yes\\\">J</italic>) is found to vary by ∼100% by increasing the value of doping, ranging from ∼6 meV (for <italic toggle=\\\"yes\\\">x</italic> = 0.3) to 13 meV (for <italic toggle=\\\"yes\\\">x</italic> = 1).\",\"PeriodicalId\":6812,\"journal\":{\"name\":\"2D Materials\",\"volume\":\"87 1\",\"pages\":\"\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2024-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2D Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1088/2053-1583/ad3e0a\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2D Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/2053-1583/ad3e0a","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
The interplay of topology and antiferromagnetic order in two-dimensional van der Waals crystals of (Ni x Fe1−x )2P2S6
The Mermin–Wagner theorem forbids spontaneous symmetry breaking of spins in one/two-dimensional (2D) systems at a finite temperature and rules out the stabilization of this ordered state. However, it does not apply to all types of phase transitions in low dimensions, such as the topologically ordered phase rigorously shown by Berezinskii–Kosterlitz–Thouless (BKT) and experimentally realized in very limited systems such as superfluids and superconducting thin films. Quasi-2D van der Waals magnets provide an ideal platform to investigate the fundamentals of low-dimensional magnetism. We explored the quasi-2D honeycomb antiferromagnetic single crystals of (NixFe1−x)2P2S6 (x = 1, 0.7, 0.5, 0.3, and 0) using in-depth temperature-dependent Raman measurements supported by first-principles calculations of the phonon frequencies. Quite surprisingly, we observed renormalization of the phonon modes much below the long-range magnetic ordered temperature attributed to the topological ordered state, namely the BKT phase, which is also found to change as a function of doping. The extracted critical exponent of the order-parameter (spin–spin correlation length, ξ(T)) evinces the signature of a topologically active state driven by vortex–antivortex excitations. As a function of doping, a tunable transition from paramagnetic to antiferromagnetic ordering is shown via phonons reflected in the strong renormalization of the self-energy parameters of the Raman active phonon modes. The extracted exchange parameter (J) is found to vary by ∼100% by increasing the value of doping, ranging from ∼6 meV (for x = 0.3) to 13 meV (for x = 1).
期刊介绍:
2D Materials is a multidisciplinary, electronic-only journal devoted to publishing fundamental and applied research of the highest quality and impact covering all aspects of graphene and related two-dimensional materials.