Bruno Deprez, Félix Vandervorst, Wouter Verbeke, Tim Verdonck, Bart Baesens
{"title":"用于保险欺诈检测的网络分析:关键案例研究","authors":"Bruno Deprez, Félix Vandervorst, Wouter Verbeke, Tim Verdonck, Bart Baesens","doi":"10.1007/s13385-024-00384-6","DOIUrl":null,"url":null,"abstract":"<p>There has been an increasing interest in fraud detection methods, driven by new regulations and by the financial losses linked to fraud. One of the state-of-the-art methods to fight fraud is network analytics. Network analytics leverages the interactions between different entities to detect complex patterns that are indicative of fraud. However, network analytics has only recently been applied to fraud detection in the actuarial literature. Although it shows much potential, many network methods are not yet applied. This paper extends the literature in two main ways. First, we review and apply multiple methods in the context of insurance fraud and assess their predictive power against each other. Second, we analyse the added value of network features over intrinsic features to detect fraud. We conclude that (1) complex methods do not necessarily outperform basic network features, and that (2) network analytics helps to detect different fraud patterns, compared to models trained on claim-specific features alone.</p>","PeriodicalId":44305,"journal":{"name":"European Actuarial Journal","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Network analytics for insurance fraud detection: a critical case study\",\"authors\":\"Bruno Deprez, Félix Vandervorst, Wouter Verbeke, Tim Verdonck, Bart Baesens\",\"doi\":\"10.1007/s13385-024-00384-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>There has been an increasing interest in fraud detection methods, driven by new regulations and by the financial losses linked to fraud. One of the state-of-the-art methods to fight fraud is network analytics. Network analytics leverages the interactions between different entities to detect complex patterns that are indicative of fraud. However, network analytics has only recently been applied to fraud detection in the actuarial literature. Although it shows much potential, many network methods are not yet applied. This paper extends the literature in two main ways. First, we review and apply multiple methods in the context of insurance fraud and assess their predictive power against each other. Second, we analyse the added value of network features over intrinsic features to detect fraud. We conclude that (1) complex methods do not necessarily outperform basic network features, and that (2) network analytics helps to detect different fraud patterns, compared to models trained on claim-specific features alone.</p>\",\"PeriodicalId\":44305,\"journal\":{\"name\":\"European Actuarial Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Actuarial Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s13385-024-00384-6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BUSINESS, FINANCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Actuarial Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s13385-024-00384-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
Network analytics for insurance fraud detection: a critical case study
There has been an increasing interest in fraud detection methods, driven by new regulations and by the financial losses linked to fraud. One of the state-of-the-art methods to fight fraud is network analytics. Network analytics leverages the interactions between different entities to detect complex patterns that are indicative of fraud. However, network analytics has only recently been applied to fraud detection in the actuarial literature. Although it shows much potential, many network methods are not yet applied. This paper extends the literature in two main ways. First, we review and apply multiple methods in the context of insurance fraud and assess their predictive power against each other. Second, we analyse the added value of network features over intrinsic features to detect fraud. We conclude that (1) complex methods do not necessarily outperform basic network features, and that (2) network analytics helps to detect different fraud patterns, compared to models trained on claim-specific features alone.
期刊介绍:
Actuarial science and actuarial finance deal with the study, modeling and managing of insurance and related financial risks for which stochastic models and statistical methods are available. Topics include classical actuarial mathematics such as life and non-life insurance, pension funds, reinsurance, and also more recent areas of interest such as risk management, asset-and-liability management, solvency, catastrophe modeling, systematic changes in risk parameters, longevity, etc. EAJ is designed for the promotion and development of actuarial science and actuarial finance. For this, we publish original actuarial research papers, either theoretical or applied, with innovative applications, as well as case studies on the evaluation and implementation of new mathematical methods in insurance and actuarial finance. We also welcome survey papers on topics of recent interest in the field. EAJ is the successor of six national actuarial journals, and particularly focuses on links between actuarial theory and practice. In order to serve as a platform for this exchange, we also welcome discussions (typically from practitioners, with a length of 1-3 pages) on published papers that highlight the application aspects of the discussed paper. Such discussions can also suggest modifications of the studied problem which are of particular interest to actuarial practice. Thus, they can serve as motivation for further studies.Finally, EAJ now also publishes ‘Letters’, which are short papers (up to 5 pages) that have academic and/or practical relevance and consist of e.g. an interesting idea, insight, clarification or observation of a cross-connection that deserves publication, but is shorter than a usual research article. A detailed description or proposition of a new relevant research question, short but curious mathematical results that deserve the attention of the actuarial community as well as novel applications of mathematical and actuarial concepts are equally welcome. Letter submissions will be reviewed within 6 weeks, so that they provide an opportunity to get good and pertinent ideas published quickly, while the same refereeing standards as for other submissions apply. Both academics and practitioners are encouraged to contribute to this new format. Authors are invited to submit their papers online via http://euaj.edmgr.com.