Yu Wang, Youyou Zhou, Jian Chen, Yong Cao, Zhijiang Wang, Xiaojiang Huang and Ya Zhang
{"title":"定制频率调制射频源驱动的电容耦合等离子体的数值特性分析","authors":"Yu Wang, Youyou Zhou, Jian Chen, Yong Cao, Zhijiang Wang, Xiaojiang Huang and Ya Zhang","doi":"10.1088/1361-6595/ad4587","DOIUrl":null,"url":null,"abstract":"Capacitively coupled plasma (CCP) is widely used in plasma etching and deposition processes because of its low cost, simple structure, and easy generation of a uniform plasma in large areas. Conventional CCPs are operated under a fixed frequency power source; however, CCPs driven by a variable frequency power source are poorly understood. In this paper, numerical simulations of CCPs driven by frequency modulated (FM) radio frequency (RF) sources within the frequency range of 2 MHz–18 MHz are carried out with a particle-in-cell/Monte Carlo collision model. Our research indicates that the CCP driven by an FM RF source can maintain a stable glow discharge and form a time-dependent plasma. Plasma density, electron and ion current, energy and heating rate, ion flux, and energy on the electrodes fluctuate consistently with the FM period. The electron and ion energy distribution function can also be modulated by the frequency variation of the FM source. A multi-peak structure that varies and shifts with frequency variation is observed in the ion energy distribution function. In addition, by fixing the chirp period while varying the start or end frequency of the chirp signal (start frequency from 0.4 to 6 MHz, or end frequency from 18 to 48 MHz), effective modulations can be produced on the electron density, electron energy, and the shape of the EEPF and IEDF.","PeriodicalId":20192,"journal":{"name":"Plasma Sources Science and Technology","volume":"155 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical characterization of capacitively coupled plasma driven by tailored frequency modulated radio frequency source\",\"authors\":\"Yu Wang, Youyou Zhou, Jian Chen, Yong Cao, Zhijiang Wang, Xiaojiang Huang and Ya Zhang\",\"doi\":\"10.1088/1361-6595/ad4587\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Capacitively coupled plasma (CCP) is widely used in plasma etching and deposition processes because of its low cost, simple structure, and easy generation of a uniform plasma in large areas. Conventional CCPs are operated under a fixed frequency power source; however, CCPs driven by a variable frequency power source are poorly understood. In this paper, numerical simulations of CCPs driven by frequency modulated (FM) radio frequency (RF) sources within the frequency range of 2 MHz–18 MHz are carried out with a particle-in-cell/Monte Carlo collision model. Our research indicates that the CCP driven by an FM RF source can maintain a stable glow discharge and form a time-dependent plasma. Plasma density, electron and ion current, energy and heating rate, ion flux, and energy on the electrodes fluctuate consistently with the FM period. The electron and ion energy distribution function can also be modulated by the frequency variation of the FM source. A multi-peak structure that varies and shifts with frequency variation is observed in the ion energy distribution function. In addition, by fixing the chirp period while varying the start or end frequency of the chirp signal (start frequency from 0.4 to 6 MHz, or end frequency from 18 to 48 MHz), effective modulations can be produced on the electron density, electron energy, and the shape of the EEPF and IEDF.\",\"PeriodicalId\":20192,\"journal\":{\"name\":\"Plasma Sources Science and Technology\",\"volume\":\"155 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plasma Sources Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6595/ad4587\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plasma Sources Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1361-6595/ad4587","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Numerical characterization of capacitively coupled plasma driven by tailored frequency modulated radio frequency source
Capacitively coupled plasma (CCP) is widely used in plasma etching and deposition processes because of its low cost, simple structure, and easy generation of a uniform plasma in large areas. Conventional CCPs are operated under a fixed frequency power source; however, CCPs driven by a variable frequency power source are poorly understood. In this paper, numerical simulations of CCPs driven by frequency modulated (FM) radio frequency (RF) sources within the frequency range of 2 MHz–18 MHz are carried out with a particle-in-cell/Monte Carlo collision model. Our research indicates that the CCP driven by an FM RF source can maintain a stable glow discharge and form a time-dependent plasma. Plasma density, electron and ion current, energy and heating rate, ion flux, and energy on the electrodes fluctuate consistently with the FM period. The electron and ion energy distribution function can also be modulated by the frequency variation of the FM source. A multi-peak structure that varies and shifts with frequency variation is observed in the ion energy distribution function. In addition, by fixing the chirp period while varying the start or end frequency of the chirp signal (start frequency from 0.4 to 6 MHz, or end frequency from 18 to 48 MHz), effective modulations can be produced on the electron density, electron energy, and the shape of the EEPF and IEDF.