内存分解的 Radix 树

IF 2.1 3区 计算机科学 Q3 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE ACM Transactions on Storage Pub Date : 2024-05-08 DOI:10.1145/3664289
Xuchuan Luo, Pengfei Zuo, Jiacheng Shen, Jiazhen Gu, Xin Wang, Michael Lyu, Yangfan Zhou
{"title":"内存分解的 Radix 树","authors":"Xuchuan Luo, Pengfei Zuo, Jiacheng Shen, Jiazhen Gu, Xin Wang, Michael Lyu, Yangfan Zhou","doi":"10.1145/3664289","DOIUrl":null,"url":null,"abstract":"<p>Disaggregated memory (DM) is an increasingly prevalent architecture with high resource utilization. It separates computing and memory resources into two pools and interconnects them with fast networks. Existing range indexes on DM are based on B+ trees, which suffer from large inherent read and write amplifications. The read and write amplifications rapidly saturate the network bandwidth, resulting in low request throughput and high access latency of B+ trees on DM. </p><p>In this paper, we propose that the radix tree is more suitable for DM than the B+ tree due to smaller read and write amplifications. However, constructing a radix tree on DM is challenging due to the costly lock-based concurrency control, the bounded memory-side IOPS, and the complicated computing-side cache validation. To address these challenges, we design <b>SMART</b>, the first radix tree for disaggregated memory with high performance. Specifically, we leverage 1) a <i>hybrid concurrency control</i> scheme including lock-free internal nodes and fine-grained lock-based leaf nodes to reduce lock overhead, 2) a computing-side <i>read-delegation and write-combining</i> technique to break through the IOPS upper bound by reducing redundant I/Os, and 3) a simple yet effective <i>reverse check</i> mechanism for computing-side cache validation. Experimental results show that SMART achieves 6.1 × higher throughput under typical write-intensive workloads and 2.8 × higher throughput under read-only workloads in YCSB benchmarks, compared with state-of-the-art B+ trees on DM.</p>","PeriodicalId":49113,"journal":{"name":"ACM Transactions on Storage","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Memory-Disaggregated Radix Tree\",\"authors\":\"Xuchuan Luo, Pengfei Zuo, Jiacheng Shen, Jiazhen Gu, Xin Wang, Michael Lyu, Yangfan Zhou\",\"doi\":\"10.1145/3664289\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Disaggregated memory (DM) is an increasingly prevalent architecture with high resource utilization. It separates computing and memory resources into two pools and interconnects them with fast networks. Existing range indexes on DM are based on B+ trees, which suffer from large inherent read and write amplifications. The read and write amplifications rapidly saturate the network bandwidth, resulting in low request throughput and high access latency of B+ trees on DM. </p><p>In this paper, we propose that the radix tree is more suitable for DM than the B+ tree due to smaller read and write amplifications. However, constructing a radix tree on DM is challenging due to the costly lock-based concurrency control, the bounded memory-side IOPS, and the complicated computing-side cache validation. To address these challenges, we design <b>SMART</b>, the first radix tree for disaggregated memory with high performance. Specifically, we leverage 1) a <i>hybrid concurrency control</i> scheme including lock-free internal nodes and fine-grained lock-based leaf nodes to reduce lock overhead, 2) a computing-side <i>read-delegation and write-combining</i> technique to break through the IOPS upper bound by reducing redundant I/Os, and 3) a simple yet effective <i>reverse check</i> mechanism for computing-side cache validation. Experimental results show that SMART achieves 6.1 × higher throughput under typical write-intensive workloads and 2.8 × higher throughput under read-only workloads in YCSB benchmarks, compared with state-of-the-art B+ trees on DM.</p>\",\"PeriodicalId\":49113,\"journal\":{\"name\":\"ACM Transactions on Storage\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Storage\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3664289\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Storage","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3664289","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

摘要

分解内存(DM)是一种日益流行的高资源利用率架构。它将计算和内存资源分成两个池,并通过快速网络互连。DM 上现有的范围索引基于 B+ 树,这种索引存在较大的固有读写放大。读写放大会使网络带宽迅速饱和,导致 DM 上 B+ 树的请求吞吐量低、访问延迟高。本文提出,由于读写放大较小,弧度树比 B+ 树更适合 DM。然而,由于基于锁的并发控制成本高昂、内存侧 IOPS 受限以及计算侧缓存验证复杂,在 DM 上构建弧度树具有挑战性。为了应对这些挑战,我们设计了 SMART,这是第一个用于高性能分解内存的弧度树。具体来说,我们利用:1)一种混合并发控制方案,包括无锁内部节点和基于细粒度锁的叶节点,以减少锁开销;2)一种计算侧读委托和写合并技术,通过减少冗余 I/O 来突破 IOPS 上限;3)一种简单而有效的反向检查机制,用于计算侧缓存验证。实验结果表明,在 YCSB 基准中,与 DM 上最先进的 B+ 树相比,SMART 在典型写密集型工作负载下的吞吐量提高了 6.1 倍,在只读工作负载下的吞吐量提高了 2.8 倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Memory-Disaggregated Radix Tree

Disaggregated memory (DM) is an increasingly prevalent architecture with high resource utilization. It separates computing and memory resources into two pools and interconnects them with fast networks. Existing range indexes on DM are based on B+ trees, which suffer from large inherent read and write amplifications. The read and write amplifications rapidly saturate the network bandwidth, resulting in low request throughput and high access latency of B+ trees on DM.

In this paper, we propose that the radix tree is more suitable for DM than the B+ tree due to smaller read and write amplifications. However, constructing a radix tree on DM is challenging due to the costly lock-based concurrency control, the bounded memory-side IOPS, and the complicated computing-side cache validation. To address these challenges, we design SMART, the first radix tree for disaggregated memory with high performance. Specifically, we leverage 1) a hybrid concurrency control scheme including lock-free internal nodes and fine-grained lock-based leaf nodes to reduce lock overhead, 2) a computing-side read-delegation and write-combining technique to break through the IOPS upper bound by reducing redundant I/Os, and 3) a simple yet effective reverse check mechanism for computing-side cache validation. Experimental results show that SMART achieves 6.1 × higher throughput under typical write-intensive workloads and 2.8 × higher throughput under read-only workloads in YCSB benchmarks, compared with state-of-the-art B+ trees on DM.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACM Transactions on Storage
ACM Transactions on Storage COMPUTER SCIENCE, HARDWARE & ARCHITECTURE-COMPUTER SCIENCE, SOFTWARE ENGINEERING
CiteScore
4.20
自引率
5.90%
发文量
33
审稿时长
>12 weeks
期刊介绍: The ACM Transactions on Storage (TOS) is a new journal with an intent to publish original archival papers in the area of storage and closely related disciplines. Articles that appear in TOS will tend either to present new techniques and concepts or to report novel experiences and experiments with practical systems. Storage is a broad and multidisciplinary area that comprises of network protocols, resource management, data backup, replication, recovery, devices, security, and theory of data coding, densities, and low-power. Potential synergies among these fields are expected to open up new research directions.
期刊最新文献
ReadGuard: Integrated SSD Management for Priority-Aware Read Performance Differentiation From SSDs Back to HDDs: Optimizing VDO to Support Inline Deduplication and Compression for HDDs as Primary Storage Media Extremely-Compressed SSDs with I/O Behavior Prediction Introduction to the Special Section on USENIX OSDI 2023 LVMT: An Efficient Authenticated Storage for Blockchain
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1