{"title":"掺锌和掺钴羟基磷灰石电子特性的综合研究","authors":"Yusuf Şamil Tekin, Tankut Ates","doi":"10.1007/s41779-024-01024-8","DOIUrl":null,"url":null,"abstract":"<div><p>This study presents a comprehensive investigation into the electronic properties of Hydroxyapatite (HAp) doped with Zinc (Zn) and Cobalt (Co). Five distinct compositions, denoted as 0.15Zn-HAp, 0.15Co-0.15Zn-HAp, 0.30Co-0.15Zn-HAp, 0.45Co-0.15Zn-HAp, and 0.6Co-0.15Zn-HAp (at%,) have been systematically studied employing Density of States (DOS) and band structure calculations. The computed band gap values for these compositions were determined to be 4.6663, 4.6888, 4.7049, 4.7159, and 4.7082 eV, respectively. These results illuminate the profound influence of Zn and Co doping on the electronic structure of Hydroxyapatite. These findings hold significant implications for the potential applications of these materials in diverse technological and biomedical domains. The systematic approach and precise electronic property characterizations presented in this study provide a robust foundation for further advancements in the realm of advanced materials, with particular relevance to the development of innovative materials for use in cutting-edge technologies and medical applications.</p></div>","PeriodicalId":673,"journal":{"name":"Journal of the Australian Ceramic Society","volume":"60 4","pages":"1219 - 1231"},"PeriodicalIF":1.8000,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s41779-024-01024-8.pdf","citationCount":"0","resultStr":"{\"title\":\"Comprehensive investigation of the electronic properties of zinc and cobalt doped hydroxyapatite\",\"authors\":\"Yusuf Şamil Tekin, Tankut Ates\",\"doi\":\"10.1007/s41779-024-01024-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study presents a comprehensive investigation into the electronic properties of Hydroxyapatite (HAp) doped with Zinc (Zn) and Cobalt (Co). Five distinct compositions, denoted as 0.15Zn-HAp, 0.15Co-0.15Zn-HAp, 0.30Co-0.15Zn-HAp, 0.45Co-0.15Zn-HAp, and 0.6Co-0.15Zn-HAp (at%,) have been systematically studied employing Density of States (DOS) and band structure calculations. The computed band gap values for these compositions were determined to be 4.6663, 4.6888, 4.7049, 4.7159, and 4.7082 eV, respectively. These results illuminate the profound influence of Zn and Co doping on the electronic structure of Hydroxyapatite. These findings hold significant implications for the potential applications of these materials in diverse technological and biomedical domains. The systematic approach and precise electronic property characterizations presented in this study provide a robust foundation for further advancements in the realm of advanced materials, with particular relevance to the development of innovative materials for use in cutting-edge technologies and medical applications.</p></div>\",\"PeriodicalId\":673,\"journal\":{\"name\":\"Journal of the Australian Ceramic Society\",\"volume\":\"60 4\",\"pages\":\"1219 - 1231\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s41779-024-01024-8.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Australian Ceramic Society\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s41779-024-01024-8\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, CERAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Australian Ceramic Society","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s41779-024-01024-8","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
Comprehensive investigation of the electronic properties of zinc and cobalt doped hydroxyapatite
This study presents a comprehensive investigation into the electronic properties of Hydroxyapatite (HAp) doped with Zinc (Zn) and Cobalt (Co). Five distinct compositions, denoted as 0.15Zn-HAp, 0.15Co-0.15Zn-HAp, 0.30Co-0.15Zn-HAp, 0.45Co-0.15Zn-HAp, and 0.6Co-0.15Zn-HAp (at%,) have been systematically studied employing Density of States (DOS) and band structure calculations. The computed band gap values for these compositions were determined to be 4.6663, 4.6888, 4.7049, 4.7159, and 4.7082 eV, respectively. These results illuminate the profound influence of Zn and Co doping on the electronic structure of Hydroxyapatite. These findings hold significant implications for the potential applications of these materials in diverse technological and biomedical domains. The systematic approach and precise electronic property characterizations presented in this study provide a robust foundation for further advancements in the realm of advanced materials, with particular relevance to the development of innovative materials for use in cutting-edge technologies and medical applications.
期刊介绍:
Publishes high quality research and technical papers in all areas of ceramic and related materials
Spans the broad and growing fields of ceramic technology, material science and bioceramics
Chronicles new advances in ceramic materials, manufacturing processes and applications
Journal of the Australian Ceramic Society since 1965
Professional language editing service is available through our affiliates Nature Research Editing Service and American Journal Experts at the author''s cost and does not guarantee that the manuscript will be reviewed or accepted