基于视觉注意力机制的多器官红枣分类

IF 1.2 4区 农林科学 Q3 HORTICULTURE Erwerbs-Obstbau Pub Date : 2024-05-10 DOI:10.1007/s10341-024-01099-4
Yufei Song, Jiaqing Cao, Zhiguo Liu, Xi Meng, Yingchun Yuan, Tianzhen Liu
{"title":"基于视觉注意力机制的多器官红枣分类","authors":"Yufei Song, Jiaqing Cao, Zhiguo Liu, Xi Meng, Yingchun Yuan, Tianzhen Liu","doi":"10.1007/s10341-024-01099-4","DOIUrl":null,"url":null,"abstract":"<p>Jujube variety classification is a challenging task because of the difficulty in identifying discriminant features, making it difficult to find the subtle features that can fully represent the variety. Besides, jujube identification using single-organ fruit is not sufficiently reliable because different jujube varieties usually have similar fruit shape. To overcome these problems, this paper proposed an automatic jujube identification model based on attention mechanism by combining multiple organs of jujube. The model used a conventional neural network to perform feature extraction on images, and subsequently adopted some fusion techniques to further process the feature maps. By introducing the attention mechanism, the model could recalibrate channel and spatial characteristic responses adaptively so as to focus on the more discriminative regions of the images. Based on the idea of fusing multi-organ features, the network effectively obtained more significant cues for jujube recognition. Experimental results showed that the proposed network had a higher accuracy of 94.77% on jujube classification compared with other methods. It is demonstrated that the network was of great value to jujube recognition research.</p>","PeriodicalId":11889,"journal":{"name":"Erwerbs-Obstbau","volume":"45 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-organ Jujube Classification Based on a Visual Attention Mechanism\",\"authors\":\"Yufei Song, Jiaqing Cao, Zhiguo Liu, Xi Meng, Yingchun Yuan, Tianzhen Liu\",\"doi\":\"10.1007/s10341-024-01099-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Jujube variety classification is a challenging task because of the difficulty in identifying discriminant features, making it difficult to find the subtle features that can fully represent the variety. Besides, jujube identification using single-organ fruit is not sufficiently reliable because different jujube varieties usually have similar fruit shape. To overcome these problems, this paper proposed an automatic jujube identification model based on attention mechanism by combining multiple organs of jujube. The model used a conventional neural network to perform feature extraction on images, and subsequently adopted some fusion techniques to further process the feature maps. By introducing the attention mechanism, the model could recalibrate channel and spatial characteristic responses adaptively so as to focus on the more discriminative regions of the images. Based on the idea of fusing multi-organ features, the network effectively obtained more significant cues for jujube recognition. Experimental results showed that the proposed network had a higher accuracy of 94.77% on jujube classification compared with other methods. It is demonstrated that the network was of great value to jujube recognition research.</p>\",\"PeriodicalId\":11889,\"journal\":{\"name\":\"Erwerbs-Obstbau\",\"volume\":\"45 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Erwerbs-Obstbau\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1007/s10341-024-01099-4\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"HORTICULTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Erwerbs-Obstbau","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s10341-024-01099-4","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"HORTICULTURE","Score":null,"Total":0}
引用次数: 0

摘要

红枣品种分类是一项具有挑战性的任务,因为难以确定鉴别特征,很难找到能够完全代表品种的细微特征。此外,使用单器官果实进行红枣识别不够可靠,因为不同品种的红枣通常具有相似的果实形状。为了克服这些问题,本文结合红枣的多个器官,提出了一种基于注意力机制的红枣自动识别模型。该模型使用传统的神经网络对图像进行特征提取,然后采用一些融合技术对特征图进行进一步处理。通过引入注意力机制,该模型可以自适应地重新校准信道和空间特征响应,从而将注意力集中在图像中更具鉴别力的区域。基于多器官特征融合的思想,该网络有效地获得了更多重要的红枣识别线索。实验结果表明,与其他方法相比,所提出的网络对红枣分类的准确率高达 94.77%。这表明该网络对红枣识别研究具有重要价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multi-organ Jujube Classification Based on a Visual Attention Mechanism

Jujube variety classification is a challenging task because of the difficulty in identifying discriminant features, making it difficult to find the subtle features that can fully represent the variety. Besides, jujube identification using single-organ fruit is not sufficiently reliable because different jujube varieties usually have similar fruit shape. To overcome these problems, this paper proposed an automatic jujube identification model based on attention mechanism by combining multiple organs of jujube. The model used a conventional neural network to perform feature extraction on images, and subsequently adopted some fusion techniques to further process the feature maps. By introducing the attention mechanism, the model could recalibrate channel and spatial characteristic responses adaptively so as to focus on the more discriminative regions of the images. Based on the idea of fusing multi-organ features, the network effectively obtained more significant cues for jujube recognition. Experimental results showed that the proposed network had a higher accuracy of 94.77% on jujube classification compared with other methods. It is demonstrated that the network was of great value to jujube recognition research.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Erwerbs-Obstbau
Erwerbs-Obstbau 农林科学-园艺
CiteScore
1.70
自引率
15.40%
发文量
152
审稿时长
>12 weeks
期刊介绍: Erwerbs-Obstbau ist als internationales Fachorgan die führende Zeitschrift für Wissenschaftler, Berater und Praktiker im Erwerbsobstbau. Neben den wirtschaftlich führenden Obstarten widmet sich die Zeitschrift auch den Wildobstarten bzw. neuen Obstarten und deren zukünftige Bedeutung für die Ernährung des Menschen. Originalarbeiten mit zahlreichen Abbildungen, Übersichten und Tabellen stellen anwendungsbezogen den neuesten Kenntnisstand dar und schlagen eine Brücke zwischen Wissenschaft und Praxis. Die nach einem Begutachtungsprozeß zur Publikation angenommenen Originalarbeiten erscheinen in deutscher und englischer Sprache mit deutschem und englischem Titel. Review-Artikel, Buchbesprechungen und aktuelle Fachinformationen runden das Angebot ab.
期刊最新文献
Seed Cold Stratification and Seedling Cycocel Application Affect Papaya Attributes Leaf Plant Nutrient Content and Sapling Growth of ‘Transvalia’ Peach Variety Grafted On Prunus Rootstocks Effect of Boric Acid in In Vitro Conditions on the Salt Tolerance of Fox Grapes (Vitis Labrusca L.) Energy Usage, Greenhouse Gas Emission and Economic Analysis of Sour Cherry Production in Türkiye: The Case of Isparta Province Pomegranate and Salt Stress Responses—Assimilation Activities and Chlorophyll Fluorescence Performances: A Review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1