Sarah M. Laske, Vanessa R. von Biela, Ashley E. Stanek, Kenneth H. Dunton
{"title":"当地环境条件决定了北极泻湖中离散鱼群的结构","authors":"Sarah M. Laske, Vanessa R. von Biela, Ashley E. Stanek, Kenneth H. Dunton","doi":"10.1007/s00300-024-03239-8","DOIUrl":null,"url":null,"abstract":"<p>Rapid changes in sea ice extent and changes in freshwater inputs from land are rapidly changing the nature of Arctic estuarine ecosystems. In the Beaufort Sea, these nearshore habitats are known for their high productivity and mix of marine resident and diadromous fishes that have great subsistence value for Indigenous communities. There is, however, a lack of information on the spatial variation among Arctic nearshore fish communities as related to environmental drivers. In summers of 2017–2019, we sampled fishes in four estuarine ecosystems to assess community composition and relate fish abundance to temperature, salinity, and wind conditions. We found fish communities were heterogeneous over larger spatial extents with rivers forming fresh estuarine plumes that supported diadromous species (e.g., broad whitefish <i>Coregonus nasus</i>), while lagoons with reduced freshwater input and higher salinities were associated with marine species (e.g., saffron cod <i>Eleginus gracilis</i>). West–East directional winds accounted for up to 66% of the community variation, indicating importance of the wind-driven balance between fresh and marine water masses. Salinity and temperature accounted for up to 54% and 37% of the variation among lagoon communities, respectively. Recent sea ice declines provide more opportunity for wind to influence oceanographic conditions and biological communities. Current subsistence practices, future commercial fishing opportunities, and on-going oil and gas activities benefit from a better understanding of current fish community distributions. This work provides important data on fish spatial distributions and community composition, providing a basis for fish community response to changing climatic conditions and anthropogenic use.</p>","PeriodicalId":20362,"journal":{"name":"Polar Biology","volume":"76 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Local environmental conditions structured discrete fish assemblages in Arctic lagoons\",\"authors\":\"Sarah M. Laske, Vanessa R. von Biela, Ashley E. Stanek, Kenneth H. Dunton\",\"doi\":\"10.1007/s00300-024-03239-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Rapid changes in sea ice extent and changes in freshwater inputs from land are rapidly changing the nature of Arctic estuarine ecosystems. In the Beaufort Sea, these nearshore habitats are known for their high productivity and mix of marine resident and diadromous fishes that have great subsistence value for Indigenous communities. There is, however, a lack of information on the spatial variation among Arctic nearshore fish communities as related to environmental drivers. In summers of 2017–2019, we sampled fishes in four estuarine ecosystems to assess community composition and relate fish abundance to temperature, salinity, and wind conditions. We found fish communities were heterogeneous over larger spatial extents with rivers forming fresh estuarine plumes that supported diadromous species (e.g., broad whitefish <i>Coregonus nasus</i>), while lagoons with reduced freshwater input and higher salinities were associated with marine species (e.g., saffron cod <i>Eleginus gracilis</i>). West–East directional winds accounted for up to 66% of the community variation, indicating importance of the wind-driven balance between fresh and marine water masses. Salinity and temperature accounted for up to 54% and 37% of the variation among lagoon communities, respectively. Recent sea ice declines provide more opportunity for wind to influence oceanographic conditions and biological communities. Current subsistence practices, future commercial fishing opportunities, and on-going oil and gas activities benefit from a better understanding of current fish community distributions. This work provides important data on fish spatial distributions and community composition, providing a basis for fish community response to changing climatic conditions and anthropogenic use.</p>\",\"PeriodicalId\":20362,\"journal\":{\"name\":\"Polar Biology\",\"volume\":\"76 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polar Biology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1007/s00300-024-03239-8\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIODIVERSITY CONSERVATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polar Biology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s00300-024-03239-8","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIODIVERSITY CONSERVATION","Score":null,"Total":0}
Local environmental conditions structured discrete fish assemblages in Arctic lagoons
Rapid changes in sea ice extent and changes in freshwater inputs from land are rapidly changing the nature of Arctic estuarine ecosystems. In the Beaufort Sea, these nearshore habitats are known for their high productivity and mix of marine resident and diadromous fishes that have great subsistence value for Indigenous communities. There is, however, a lack of information on the spatial variation among Arctic nearshore fish communities as related to environmental drivers. In summers of 2017–2019, we sampled fishes in four estuarine ecosystems to assess community composition and relate fish abundance to temperature, salinity, and wind conditions. We found fish communities were heterogeneous over larger spatial extents with rivers forming fresh estuarine plumes that supported diadromous species (e.g., broad whitefish Coregonus nasus), while lagoons with reduced freshwater input and higher salinities were associated with marine species (e.g., saffron cod Eleginus gracilis). West–East directional winds accounted for up to 66% of the community variation, indicating importance of the wind-driven balance between fresh and marine water masses. Salinity and temperature accounted for up to 54% and 37% of the variation among lagoon communities, respectively. Recent sea ice declines provide more opportunity for wind to influence oceanographic conditions and biological communities. Current subsistence practices, future commercial fishing opportunities, and on-going oil and gas activities benefit from a better understanding of current fish community distributions. This work provides important data on fish spatial distributions and community composition, providing a basis for fish community response to changing climatic conditions and anthropogenic use.
期刊介绍:
Polar Biology publishes Original Papers, Reviews, and Short Notes and is the focal point for biologists working in polar regions. It is also of interest to scientists working in biology in general, ecology and physiology, as well as in oceanography and climatology related to polar life. Polar Biology presents results of studies in plants, animals, and micro-organisms of marine, limnic and terrestrial habitats in polar and subpolar regions of both hemispheres.
Taxonomy/ Biogeography
Life History
Spatio-temporal Patterns in Abundance and Diversity
Ecological Interactions
Trophic Ecology
Ecophysiology/ Biochemistry of Adaptation
Biogeochemical Pathways and Cycles
Ecological Models
Human Impact/ Climate Change/ Conservation