{"title":"均匀彩色扰动数图中的彩虹汉密尔顿性","authors":"Kyriakos Katsamaktsis, Shoham Letzter, Amedeo Sgueglia","doi":"10.1017/s0963548324000130","DOIUrl":null,"url":null,"abstract":"We investigate the existence of a rainbow Hamilton cycle in a uniformly edge-coloured randomly perturbed digraph. We show that for every <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000130_inline1.png\"/> <jats:tex-math> $\\delta \\in (0,1)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> there exists <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000130_inline2.png\"/> <jats:tex-math> $C = C(\\delta ) \\gt 0$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> such that the following holds. Let <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000130_inline3.png\"/> <jats:tex-math> $D_0$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> be an <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000130_inline4.png\"/> <jats:tex-math> $n$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-vertex digraph with minimum semidegree at least <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000130_inline5.png\"/> <jats:tex-math> $\\delta n$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and suppose that each edge of the union of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000130_inline6.png\"/> <jats:tex-math> $D_0$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> with a copy of the random digraph <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000130_inline7.png\"/> <jats:tex-math> $\\mathbf{D}(n,C/n)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> on the same vertex set gets a colour in <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000130_inline8.png\"/> <jats:tex-math> $[n]$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> independently and uniformly at random. Then, with high probability, <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000130_inline9.png\"/> <jats:tex-math> $D_0 \\cup \\mathbf{D}(n,C/n)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> has a rainbow directed Hamilton cycle. This improves a result of Aigner-Horev and Hefetz ((2021) <jats:italic>SIAM J. Discrete Math.</jats:italic>35(3) 1569–1577), who proved the same in the undirected setting when the edges are coloured uniformly in a set of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000130_inline10.png\"/> <jats:tex-math> $(1 + \\varepsilon )n$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> colours.","PeriodicalId":10503,"journal":{"name":"Combinatorics, Probability and Computing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rainbow Hamiltonicity in uniformly coloured perturbed digraphs\",\"authors\":\"Kyriakos Katsamaktsis, Shoham Letzter, Amedeo Sgueglia\",\"doi\":\"10.1017/s0963548324000130\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate the existence of a rainbow Hamilton cycle in a uniformly edge-coloured randomly perturbed digraph. We show that for every <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0963548324000130_inline1.png\\\"/> <jats:tex-math> $\\\\delta \\\\in (0,1)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> there exists <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0963548324000130_inline2.png\\\"/> <jats:tex-math> $C = C(\\\\delta ) \\\\gt 0$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> such that the following holds. Let <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0963548324000130_inline3.png\\\"/> <jats:tex-math> $D_0$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> be an <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0963548324000130_inline4.png\\\"/> <jats:tex-math> $n$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-vertex digraph with minimum semidegree at least <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0963548324000130_inline5.png\\\"/> <jats:tex-math> $\\\\delta n$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and suppose that each edge of the union of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0963548324000130_inline6.png\\\"/> <jats:tex-math> $D_0$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> with a copy of the random digraph <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0963548324000130_inline7.png\\\"/> <jats:tex-math> $\\\\mathbf{D}(n,C/n)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> on the same vertex set gets a colour in <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0963548324000130_inline8.png\\\"/> <jats:tex-math> $[n]$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> independently and uniformly at random. Then, with high probability, <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0963548324000130_inline9.png\\\"/> <jats:tex-math> $D_0 \\\\cup \\\\mathbf{D}(n,C/n)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> has a rainbow directed Hamilton cycle. This improves a result of Aigner-Horev and Hefetz ((2021) <jats:italic>SIAM J. Discrete Math.</jats:italic>35(3) 1569–1577), who proved the same in the undirected setting when the edges are coloured uniformly in a set of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0963548324000130_inline10.png\\\"/> <jats:tex-math> $(1 + \\\\varepsilon )n$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> colours.\",\"PeriodicalId\":10503,\"journal\":{\"name\":\"Combinatorics, Probability and Computing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Combinatorics, Probability and Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/s0963548324000130\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combinatorics, Probability and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/s0963548324000130","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Rainbow Hamiltonicity in uniformly coloured perturbed digraphs
We investigate the existence of a rainbow Hamilton cycle in a uniformly edge-coloured randomly perturbed digraph. We show that for every $\delta \in (0,1)$ there exists $C = C(\delta ) \gt 0$ such that the following holds. Let $D_0$ be an $n$ -vertex digraph with minimum semidegree at least $\delta n$ and suppose that each edge of the union of $D_0$ with a copy of the random digraph $\mathbf{D}(n,C/n)$ on the same vertex set gets a colour in $[n]$ independently and uniformly at random. Then, with high probability, $D_0 \cup \mathbf{D}(n,C/n)$ has a rainbow directed Hamilton cycle. This improves a result of Aigner-Horev and Hefetz ((2021) SIAM J. Discrete Math.35(3) 1569–1577), who proved the same in the undirected setting when the edges are coloured uniformly in a set of $(1 + \varepsilon )n$ colours.