特异于 Phytophthora 和 P. nicotianae 的多重 PCR 与植物内部 DNA 对照,用于日本 Phytophthora 物种的有效检疫

IF 1 4区 农林科学 Q3 PLANT SCIENCES Journal of General Plant Pathology Pub Date : 2024-05-13 DOI:10.1007/s10327-024-01179-z
Kayoko Otsubo, Mingzhu Li, Auliana Afandi, Haruhisa Suga, Koji Kageyama, Ayaka Hieno
{"title":"特异于 Phytophthora 和 P. nicotianae 的多重 PCR 与植物内部 DNA 对照,用于日本 Phytophthora 物种的有效检疫","authors":"Kayoko Otsubo, Mingzhu Li, Auliana Afandi, Haruhisa Suga, Koji Kageyama, Ayaka Hieno","doi":"10.1007/s10327-024-01179-z","DOIUrl":null,"url":null,"abstract":"<p>To prevent threats from pathogens such as <i>Phytophthora</i> species from international plant trade, molecular identification techniques are needed for rapid, accurate quarantine inspection. Here, for quarantine control in Japan, we developed a simple DNA extraction for plants and a practical detection method that combines multiplexed PCR using primers specific for <i>Phytophthora</i> species, for <i>P. nicotianae</i>, which is the only non-quarantine <i>Phytophthora</i> species, and as internal controls, for plants. For the new genus-level primer set, we modified previously reported genus-specific primers to improve detectability. The new primers were able to detect mycelial DNA of 155 taxa among <i>Phytophthora</i> clades 1–10, with a sensitivity of 100 fg/µL for three representative species, <i>P. ramorum</i>, <i>P. kernoviae</i> and <i>P. nicotianae</i>. In the PCRs using DNA from non-target species, amplification was observed for only three taxa, and for some strains, four taxa in a closely related genus. Duplex and triplex PCR of the genus-specific primers combined with previously reported plant primers verified the success of DNA extraction and PCR detection from diseased plant samples, and in the triplex PCR, whether the pathogen was diagnosed as <i>P. nicotianae</i> or not by the species-specific primer. The new method detected the pathogen in naturally infected and inoculated plants. The amplicons using the genus-specific primer have enough variation to be sequenced to identify the species. This new method can be used immediately for detecting <i>Phytophthora</i> species and for quarantine control in Japan.</p>","PeriodicalId":15825,"journal":{"name":"Journal of General Plant Pathology","volume":"42 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multiplex PCR specific for genus Phytophthora and P. nicotianae with an internal plant DNA control for effective quarantine of Phytophthora species in Japan\",\"authors\":\"Kayoko Otsubo, Mingzhu Li, Auliana Afandi, Haruhisa Suga, Koji Kageyama, Ayaka Hieno\",\"doi\":\"10.1007/s10327-024-01179-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>To prevent threats from pathogens such as <i>Phytophthora</i> species from international plant trade, molecular identification techniques are needed for rapid, accurate quarantine inspection. Here, for quarantine control in Japan, we developed a simple DNA extraction for plants and a practical detection method that combines multiplexed PCR using primers specific for <i>Phytophthora</i> species, for <i>P. nicotianae</i>, which is the only non-quarantine <i>Phytophthora</i> species, and as internal controls, for plants. For the new genus-level primer set, we modified previously reported genus-specific primers to improve detectability. The new primers were able to detect mycelial DNA of 155 taxa among <i>Phytophthora</i> clades 1–10, with a sensitivity of 100 fg/µL for three representative species, <i>P. ramorum</i>, <i>P. kernoviae</i> and <i>P. nicotianae</i>. In the PCRs using DNA from non-target species, amplification was observed for only three taxa, and for some strains, four taxa in a closely related genus. Duplex and triplex PCR of the genus-specific primers combined with previously reported plant primers verified the success of DNA extraction and PCR detection from diseased plant samples, and in the triplex PCR, whether the pathogen was diagnosed as <i>P. nicotianae</i> or not by the species-specific primer. The new method detected the pathogen in naturally infected and inoculated plants. The amplicons using the genus-specific primer have enough variation to be sequenced to identify the species. This new method can be used immediately for detecting <i>Phytophthora</i> species and for quarantine control in Japan.</p>\",\"PeriodicalId\":15825,\"journal\":{\"name\":\"Journal of General Plant Pathology\",\"volume\":\"42 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of General Plant Pathology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1007/s10327-024-01179-z\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of General Plant Pathology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s10327-024-01179-z","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

为防止国际植物贸易中的病原体(如疫霉菌)造成威胁,需要采用分子鉴定技术进行快速、准确的检疫检验。在此,为了在日本进行检疫控制,我们开发了一种简单的植物 DNA 提取方法和一种实用的检测方法,该方法结合了多重 PCR,使用了针对疫霉菌属、尼古丁疫霉菌属(唯一未检疫的疫霉菌属)的特异性引物,以及作为内部对照的植物引物。对于新的属级引物集,我们修改了之前报告的属特异性引物,以提高检测能力。新引物能够检测 1-10 支系中 155 个类群的噬菌体菌丝 DNA,对三个代表性物种(P. ramorum、P. kernoviae 和 P. nicotianae)的灵敏度为 100 fg/µL。在使用非目标物种 DNA 的 PCR 中,只对三个类群进行了扩增,某些菌株还对密切相关属中的四个类群进行了扩增。种属特异性引物与之前报道的植物引物相结合的双链和三链 PCR 验证了从患病植物样本中提取 DNA 和进行 PCR 检测的成功率,而且在三链 PCR 中,无论种属特异性引物是否将病原体诊断为烟草病菌,都能成功检测到病原体。新方法能在自然感染和接种的植物中检测到病原体。使用种属特异性引物的扩增子有足够的变异,可以通过测序来确定物种。在日本,这种新方法可立即用于检测疫霉菌种和检疫控制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multiplex PCR specific for genus Phytophthora and P. nicotianae with an internal plant DNA control for effective quarantine of Phytophthora species in Japan

To prevent threats from pathogens such as Phytophthora species from international plant trade, molecular identification techniques are needed for rapid, accurate quarantine inspection. Here, for quarantine control in Japan, we developed a simple DNA extraction for plants and a practical detection method that combines multiplexed PCR using primers specific for Phytophthora species, for P. nicotianae, which is the only non-quarantine Phytophthora species, and as internal controls, for plants. For the new genus-level primer set, we modified previously reported genus-specific primers to improve detectability. The new primers were able to detect mycelial DNA of 155 taxa among Phytophthora clades 1–10, with a sensitivity of 100 fg/µL for three representative species, P. ramorum, P. kernoviae and P. nicotianae. In the PCRs using DNA from non-target species, amplification was observed for only three taxa, and for some strains, four taxa in a closely related genus. Duplex and triplex PCR of the genus-specific primers combined with previously reported plant primers verified the success of DNA extraction and PCR detection from diseased plant samples, and in the triplex PCR, whether the pathogen was diagnosed as P. nicotianae or not by the species-specific primer. The new method detected the pathogen in naturally infected and inoculated plants. The amplicons using the genus-specific primer have enough variation to be sequenced to identify the species. This new method can be used immediately for detecting Phytophthora species and for quarantine control in Japan.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.40
自引率
8.30%
发文量
60
审稿时长
6 months
期刊介绍: The Journal of General Plant Pathology welcomes all manuscripts dealing with plant diseases or their control, including pathogen characterization, identification of pathogens, disease physiology and biochemistry, molecular biology, morphology and ultrastructure, genetics, disease transmission, ecology and epidemiology, chemical and biological control, disease assessment, and other topics relevant to plant pathological disorders.
期刊最新文献
Development of a real-time loop-mediated isothermal amplification method with toothpick sampling for non-destructive detection of Ustilago esculenta in Zizania latifolia Polymorphic microsatellite markers for genetic analysis of Berkeleyomyces rouxiae, a causal agent of black root rot WRKY transcription factors identified in the transcriptome of Citrus latifolia Tan. and their expression in response to Huanglongbing disease Possible roles of immunity-related response in modulating chlorosis induced by the silencing of chloroplast HSP90C in tobacco models CRISPR/Cas9-mediated resurrection of tobacco NB-LRR class virus resistance gene from a susceptible allele with partial duplication
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1