利用可控冲击波压裂技术强化煤层气开采的研究进展

IF 6.9 1区 工程技术 Q2 ENERGY & FUELS International Journal of Coal Science & Technology Pub Date : 2024-05-14 DOI:10.1007/s40789-024-00680-2
Chaojun Fan, Hao Sun, Sheng Li, Lei Yang, Bin Xiao, Zhenhua Yang, Mingkun Luo, Xiaofeng Jiang, Lijun Zhou
{"title":"利用可控冲击波压裂技术强化煤层气开采的研究进展","authors":"Chaojun Fan, Hao Sun, Sheng Li, Lei Yang, Bin Xiao, Zhenhua Yang, Mingkun Luo, Xiaofeng Jiang, Lijun Zhou","doi":"10.1007/s40789-024-00680-2","DOIUrl":null,"url":null,"abstract":"<p>With the continuous increase of mining in depth, the gas extraction faces the challenges of low permeability, great ground stress, high temperature and large gas pressure in coal seam. The controllable shock wave (CSW), as a new method for enhancing permeability of coal seam to improve gas extraction, features in the advantages of high efficiency, eco-friendly, and low cost. In order to better utilize the CSW into gas extraction in coal mine, the mechanism and feasibility of CSW enhanced extraction need to be studied. In this paper, the basic principles, the experimental tests, the mathematical models, and the on-site tests of CSW fracturing coal seams are reviewed, thereby its future research directions are provided. Based on the different media between electrodes, the CSW can be divided into three categories: hydraulic effect, wire explosion and excitation of energetic materials by detonating wire. During the process of propagation and attenuation of the high-energy shock wave in coal, the shock wave and bubble pulsation work together to produce an enhanced permeability effect on the coal seam. The stronger the strength of the CSW is, the more cracks created in the coal is, and the greater the length, width and area of the cracks being. The repeated shock on the coal seam is conducive to the formation of complex network fracture system as well as the reduction of coal seam strength, but excessive shock frequency will also damage the coal structure, resulting in the limited effect of the enhanced gas extraction. Under the influence of ground stress, the crack propagation in coal seam will be restrained. The difference of horizontal principal stress has a significant impact on the shape, propagation direction and connectivity of the CSW induced cracks. The permeability enhancement effect of CSW is affected by the breakage degree of coal seam. The shock wave is absorbed by the broken coal, which may hinder the propagation of CSW, resulting in a poor effect of permeability enhancement. When arranging two adjacent boreholes for CSW permeability enhancement test, the spacing of boreholes should not be too close, which may lead to negative pressure mutual pulling in the early stage of drainage. At present, the accurate method for effectively predicting the CSW permeability enhanced range should be further investigated.</p>","PeriodicalId":53469,"journal":{"name":"International Journal of Coal Science & Technology","volume":"191 1","pages":""},"PeriodicalIF":6.9000,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research advances in enhanced coal seam gas extraction by controllable shock wave fracturing\",\"authors\":\"Chaojun Fan, Hao Sun, Sheng Li, Lei Yang, Bin Xiao, Zhenhua Yang, Mingkun Luo, Xiaofeng Jiang, Lijun Zhou\",\"doi\":\"10.1007/s40789-024-00680-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>With the continuous increase of mining in depth, the gas extraction faces the challenges of low permeability, great ground stress, high temperature and large gas pressure in coal seam. The controllable shock wave (CSW), as a new method for enhancing permeability of coal seam to improve gas extraction, features in the advantages of high efficiency, eco-friendly, and low cost. In order to better utilize the CSW into gas extraction in coal mine, the mechanism and feasibility of CSW enhanced extraction need to be studied. In this paper, the basic principles, the experimental tests, the mathematical models, and the on-site tests of CSW fracturing coal seams are reviewed, thereby its future research directions are provided. Based on the different media between electrodes, the CSW can be divided into three categories: hydraulic effect, wire explosion and excitation of energetic materials by detonating wire. During the process of propagation and attenuation of the high-energy shock wave in coal, the shock wave and bubble pulsation work together to produce an enhanced permeability effect on the coal seam. The stronger the strength of the CSW is, the more cracks created in the coal is, and the greater the length, width and area of the cracks being. The repeated shock on the coal seam is conducive to the formation of complex network fracture system as well as the reduction of coal seam strength, but excessive shock frequency will also damage the coal structure, resulting in the limited effect of the enhanced gas extraction. Under the influence of ground stress, the crack propagation in coal seam will be restrained. The difference of horizontal principal stress has a significant impact on the shape, propagation direction and connectivity of the CSW induced cracks. The permeability enhancement effect of CSW is affected by the breakage degree of coal seam. The shock wave is absorbed by the broken coal, which may hinder the propagation of CSW, resulting in a poor effect of permeability enhancement. When arranging two adjacent boreholes for CSW permeability enhancement test, the spacing of boreholes should not be too close, which may lead to negative pressure mutual pulling in the early stage of drainage. At present, the accurate method for effectively predicting the CSW permeability enhanced range should be further investigated.</p>\",\"PeriodicalId\":53469,\"journal\":{\"name\":\"International Journal of Coal Science & Technology\",\"volume\":\"191 1\",\"pages\":\"\"},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2024-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Coal Science & Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s40789-024-00680-2\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Coal Science & Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s40789-024-00680-2","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

随着开采深度的不断增加,瓦斯抽采面临着煤层透气性低、地应力大、温度高、瓦斯压力大的挑战。可控冲击波(CSW)作为一种提高煤层透气性以改善瓦斯抽采的新方法,具有高效、环保、低成本等优点。为了更好地利用 CSW 进行煤矿瓦斯抽采,需要对 CSW 强化抽采的机理和可行性进行研究。本文综述了 CSW 压裂煤层的基本原理、实验测试、数学模型和现场测试,并提出了未来的研究方向。根据电极间介质的不同,CSW 可分为三类:水力作用、导线爆炸和导爆索激发高能材料。高能冲击波在煤中传播和衰减的过程中,冲击波和气泡脉动共同作用,对煤层产生增强透气性的效果。冲击波的强度越大,煤层中产生的裂隙就越多,裂隙的长度、宽度和面积也就越大。煤层受到反复冲击,有利于形成复杂的网状断裂系统,也有利于降低煤层强度,但冲击频率过高也会破坏煤层结构,导致瓦斯抽采强化效果有限。在地应力的影响下,煤层中裂缝的扩展会受到抑制。水平主应力的差异对 CSW 诱发裂缝的形状、扩展方向和连通性有显著影响。CSW 的透气性增强效果受煤层破碎程度的影响。冲击波被破碎的煤层吸收,可能会阻碍 CSW 的传播,导致增透效果不佳。在布置相邻两个钻孔进行 CSW 增透试验时,钻孔间距不宜过近,以免在排水初期出现负压互拉现象。目前,有效预测 CSW 渗透率增强范围的准确方法有待进一步研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Research advances in enhanced coal seam gas extraction by controllable shock wave fracturing

With the continuous increase of mining in depth, the gas extraction faces the challenges of low permeability, great ground stress, high temperature and large gas pressure in coal seam. The controllable shock wave (CSW), as a new method for enhancing permeability of coal seam to improve gas extraction, features in the advantages of high efficiency, eco-friendly, and low cost. In order to better utilize the CSW into gas extraction in coal mine, the mechanism and feasibility of CSW enhanced extraction need to be studied. In this paper, the basic principles, the experimental tests, the mathematical models, and the on-site tests of CSW fracturing coal seams are reviewed, thereby its future research directions are provided. Based on the different media between electrodes, the CSW can be divided into three categories: hydraulic effect, wire explosion and excitation of energetic materials by detonating wire. During the process of propagation and attenuation of the high-energy shock wave in coal, the shock wave and bubble pulsation work together to produce an enhanced permeability effect on the coal seam. The stronger the strength of the CSW is, the more cracks created in the coal is, and the greater the length, width and area of the cracks being. The repeated shock on the coal seam is conducive to the formation of complex network fracture system as well as the reduction of coal seam strength, but excessive shock frequency will also damage the coal structure, resulting in the limited effect of the enhanced gas extraction. Under the influence of ground stress, the crack propagation in coal seam will be restrained. The difference of horizontal principal stress has a significant impact on the shape, propagation direction and connectivity of the CSW induced cracks. The permeability enhancement effect of CSW is affected by the breakage degree of coal seam. The shock wave is absorbed by the broken coal, which may hinder the propagation of CSW, resulting in a poor effect of permeability enhancement. When arranging two adjacent boreholes for CSW permeability enhancement test, the spacing of boreholes should not be too close, which may lead to negative pressure mutual pulling in the early stage of drainage. At present, the accurate method for effectively predicting the CSW permeability enhanced range should be further investigated.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
11.40
自引率
8.40%
发文量
678
审稿时长
12 weeks
期刊介绍: The International Journal of Coal Science & Technology is a peer-reviewed open access journal that focuses on key topics of coal scientific research and mining development. It serves as a forum for scientists to present research findings and discuss challenging issues in the field. The journal covers a range of topics including coal geology, geochemistry, geophysics, mineralogy, and petrology. It also covers coal mining theory, technology, and engineering, as well as coal processing, utilization, and conversion. Additionally, the journal explores coal mining environment and reclamation, along with related aspects. The International Journal of Coal Science & Technology is published with China Coal Society, who also cover the publication costs. This means that authors do not need to pay an article-processing charge.
期刊最新文献
Coal ash resources and potential for rare earth element production in the United States Ecological environment quality assessment of coal mining cities based on GEE platform: A case study of Shuozhou, China Study on signal characteristics of burst tendency coal under different loading rates Image-based quantitative probing of 3D heterogeneous pore structure in CBM reservoir and permeability estimation with pore network modeling Spectral signatures of solvent-extracted macromolecules in Indian coals of different rank: Insights from fluorescence excitation-emission matrix
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1