透明多孔介质模型中的对流烟羽扩散

IF 2.7 3区 工程技术 Q3 ENGINEERING, CHEMICAL Transport in Porous Media Pub Date : 2024-05-14 DOI:10.1007/s11242-024-02090-z
H. Imuetinyan, P. Fruton, C. Giraudet, F. Croccolo
{"title":"透明多孔介质模型中的对流烟羽扩散","authors":"H. Imuetinyan,&nbsp;P. Fruton,&nbsp;C. Giraudet,&nbsp;F. Croccolo","doi":"10.1007/s11242-024-02090-z","DOIUrl":null,"url":null,"abstract":"<div><p>Visualising fluid flow in porous media using optical techniques is challenging due to the inability to see through the medium. Here, we present an experimental methodology based on shadowgraphy to investigate the dynamic spreading of convective plumes in saturated transparent porous media made of glass beads. The saturated porous medium can be tuned transparent by matching the refractive index of the solid glass beads to that of the saturating fluid mixture. The proposed technique allows to investigate the essential elements of convective mixing within a porous medium using miscible fluids. We also describe a method to determine the velocity of convective plumes as they propagate. Our experimental results show that the density difference achieved during convection significantly affects the convective front velocity of the plumes. This is significant because it allows to quantitatively predict the intensity of convective mixing in porous media from the speed of the convective front.</p></div>","PeriodicalId":804,"journal":{"name":"Transport in Porous Media","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Convective Plume Spreading in Model Transparent Porous Media\",\"authors\":\"H. Imuetinyan,&nbsp;P. Fruton,&nbsp;C. Giraudet,&nbsp;F. Croccolo\",\"doi\":\"10.1007/s11242-024-02090-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Visualising fluid flow in porous media using optical techniques is challenging due to the inability to see through the medium. Here, we present an experimental methodology based on shadowgraphy to investigate the dynamic spreading of convective plumes in saturated transparent porous media made of glass beads. The saturated porous medium can be tuned transparent by matching the refractive index of the solid glass beads to that of the saturating fluid mixture. The proposed technique allows to investigate the essential elements of convective mixing within a porous medium using miscible fluids. We also describe a method to determine the velocity of convective plumes as they propagate. Our experimental results show that the density difference achieved during convection significantly affects the convective front velocity of the plumes. This is significant because it allows to quantitatively predict the intensity of convective mixing in porous media from the speed of the convective front.</p></div>\",\"PeriodicalId\":804,\"journal\":{\"name\":\"Transport in Porous Media\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transport in Porous Media\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11242-024-02090-z\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transport in Porous Media","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11242-024-02090-z","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

由于无法看透多孔介质,因此使用光学技术观察多孔介质中的流体流动具有挑战性。在此,我们介绍一种基于阴影成像的实验方法,用于研究玻璃珠制成的饱和透明多孔介质中对流羽流的动态扩散。通过使固体玻璃珠的折射率与饱和流体混合物的折射率相匹配,可以调整饱和多孔介质的透明度。利用所提出的技术,可以研究混溶流体在多孔介质中对流混合的基本要素。我们还介绍了一种测定对流羽流传播速度的方法。我们的实验结果表明,对流过程中产生的密度差会显著影响羽流的对流前沿速度。这一点非常重要,因为它可以根据对流前沿的速度定量预测多孔介质中对流混合的强度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Convective Plume Spreading in Model Transparent Porous Media

Visualising fluid flow in porous media using optical techniques is challenging due to the inability to see through the medium. Here, we present an experimental methodology based on shadowgraphy to investigate the dynamic spreading of convective plumes in saturated transparent porous media made of glass beads. The saturated porous medium can be tuned transparent by matching the refractive index of the solid glass beads to that of the saturating fluid mixture. The proposed technique allows to investigate the essential elements of convective mixing within a porous medium using miscible fluids. We also describe a method to determine the velocity of convective plumes as they propagate. Our experimental results show that the density difference achieved during convection significantly affects the convective front velocity of the plumes. This is significant because it allows to quantitatively predict the intensity of convective mixing in porous media from the speed of the convective front.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Transport in Porous Media
Transport in Porous Media 工程技术-工程:化工
CiteScore
5.30
自引率
7.40%
发文量
155
审稿时长
4.2 months
期刊介绍: -Publishes original research on physical, chemical, and biological aspects of transport in porous media- Papers on porous media research may originate in various areas of physics, chemistry, biology, natural or materials science, and engineering (chemical, civil, agricultural, petroleum, environmental, electrical, and mechanical engineering)- Emphasizes theory, (numerical) modelling, laboratory work, and non-routine applications- Publishes work of a fundamental nature, of interest to a wide readership, that provides novel insight into porous media processes- Expanded in 2007 from 12 to 15 issues per year. Transport in Porous Media publishes original research on physical and chemical aspects of transport phenomena in rigid and deformable porous media. These phenomena, occurring in single and multiphase flow in porous domains, can be governed by extensive quantities such as mass of a fluid phase, mass of component of a phase, momentum, or energy. Moreover, porous medium deformations can be induced by the transport phenomena, by chemical and electro-chemical activities such as swelling, or by external loading through forces and displacements. These porous media phenomena may be studied by researchers from various areas of physics, chemistry, biology, natural or materials science, and engineering (chemical, civil, agricultural, petroleum, environmental, electrical, and mechanical engineering).
期刊最新文献
Pore-to-Core Upscaling of Two-Phase Flow in Mixed-Wet Porous Media: Part II-A Dynamic Pore-Network Modeling Approach Pore-to-Core Upscaling of Two-Phase Flow in Mixed-Wet Porous Media: Part I—Seamless Pore-Network Extraction Analysis of Comparative Thermo-Hydraulic Performance of sCO2 and H2O as Heat-Exchange Fluids in Enhanced Geothermal Systems MHD Mixed Convection Flow Over a Permeable Vertical Flat Plate Embedded in a Darcy–Forchheimer Porous Medium Large Scale Voxel-Based FEM Formulation for NMR Relaxation in Porous Media
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1