Hua Chai , Chengyu Yan , Jiarong Guo , Fengrui Lei , Peng Miao
{"title":"基于 DNA 酶催化 DNA 水凝胶降解的 Ca2+ 电化学分析","authors":"Hua Chai , Chengyu Yan , Jiarong Guo , Fengrui Lei , Peng Miao","doi":"10.1016/j.elecom.2024.107755","DOIUrl":null,"url":null,"abstract":"<div><p>Calcium ion is a type of indispensable metal elements in biology, which participates in processes like maintaining the excitability of neuromuscular muscles. However, calcium content should be monitored in a safety range. Herein, a novel electrochemical method is developed for Ca<sup>2+</sup> assay by monitoring electrochemical response after DNAzyme catalyzed DNA hydrogel degradation. Pure DNA hydrogel is first built with three-way junction scaffolds and linkers containing Ca<sup>2+</sup>-dependent DNAzyme sequence. In the presence of target Ca<sup>2+</sup>, the substrates in linkers are cleaved and DNA hydrogel can be degraded gradually. The encapsulated electrochemical species thus facilely interact with the electrode, leading to the increase of electrochemical responses. This electrochemical method for Ca<sup>2+</sup> quantification is selective and sensitive, which also performs satisfactorily challenging biological samples like sweat and urine.</p></div>","PeriodicalId":304,"journal":{"name":"Electrochemistry Communications","volume":"165 ","pages":"Article 107755"},"PeriodicalIF":4.7000,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1388248124000985/pdfft?md5=75ec2a9b239ad8b02cef618858194ac4&pid=1-s2.0-S1388248124000985-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Electrochemical analysis of Ca2+ based on DNAzyme catalyzed degradation of DNA hydrogel\",\"authors\":\"Hua Chai , Chengyu Yan , Jiarong Guo , Fengrui Lei , Peng Miao\",\"doi\":\"10.1016/j.elecom.2024.107755\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Calcium ion is a type of indispensable metal elements in biology, which participates in processes like maintaining the excitability of neuromuscular muscles. However, calcium content should be monitored in a safety range. Herein, a novel electrochemical method is developed for Ca<sup>2+</sup> assay by monitoring electrochemical response after DNAzyme catalyzed DNA hydrogel degradation. Pure DNA hydrogel is first built with three-way junction scaffolds and linkers containing Ca<sup>2+</sup>-dependent DNAzyme sequence. In the presence of target Ca<sup>2+</sup>, the substrates in linkers are cleaved and DNA hydrogel can be degraded gradually. The encapsulated electrochemical species thus facilely interact with the electrode, leading to the increase of electrochemical responses. This electrochemical method for Ca<sup>2+</sup> quantification is selective and sensitive, which also performs satisfactorily challenging biological samples like sweat and urine.</p></div>\",\"PeriodicalId\":304,\"journal\":{\"name\":\"Electrochemistry Communications\",\"volume\":\"165 \",\"pages\":\"Article 107755\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1388248124000985/pdfft?md5=75ec2a9b239ad8b02cef618858194ac4&pid=1-s2.0-S1388248124000985-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electrochemistry Communications\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1388248124000985\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrochemistry Communications","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1388248124000985","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0
摘要
钙离子是生物体内不可或缺的一种金属元素,它参与维持神经肌肉兴奋性等过程。然而,钙含量的监测应在安全范围内进行。本文开发了一种新型电化学方法,通过监测 DNA 酶催化 DNA 水凝胶降解后的电化学反应来检测钙的含量。首先用三向接合支架和含有钙依赖性 DNA 酶序列的连接体构建纯 DNA 水凝胶。在目标 Ca 的存在下,连接体中的底物被裂解,DNA 水凝胶逐渐降解。这样,被包裹的电化学物质就很容易与电极相互作用,从而提高电化学响应。这种用于钙定量的电化学方法选择性强、灵敏度高,对汗液和尿液等生物样本的挑战性也令人满意。
Electrochemical analysis of Ca2+ based on DNAzyme catalyzed degradation of DNA hydrogel
Calcium ion is a type of indispensable metal elements in biology, which participates in processes like maintaining the excitability of neuromuscular muscles. However, calcium content should be monitored in a safety range. Herein, a novel electrochemical method is developed for Ca2+ assay by monitoring electrochemical response after DNAzyme catalyzed DNA hydrogel degradation. Pure DNA hydrogel is first built with three-way junction scaffolds and linkers containing Ca2+-dependent DNAzyme sequence. In the presence of target Ca2+, the substrates in linkers are cleaved and DNA hydrogel can be degraded gradually. The encapsulated electrochemical species thus facilely interact with the electrode, leading to the increase of electrochemical responses. This electrochemical method for Ca2+ quantification is selective and sensitive, which also performs satisfactorily challenging biological samples like sweat and urine.
期刊介绍:
Electrochemistry Communications is an open access journal providing fast dissemination of short communications, full communications and mini reviews covering the whole field of electrochemistry which merit urgent publication. Short communications are limited to a maximum of 20,000 characters (including spaces) while full communications and mini reviews are limited to 25,000 characters (including spaces). Supplementary information is permitted for full communications and mini reviews but not for short communications. We aim to be the fastest journal in electrochemistry for these types of papers.