用于砂模铸造的 3D 打印智能模具:监控粘合剂固化

IF 2.6 3区 材料科学 Q2 METALLURGY & METALLURGICAL ENGINEERING International Journal of Metalcasting Pub Date : 2024-05-09 DOI:10.1007/s40962-024-01314-8
Nathaniel Bryant, Josh O’Dell, Sairam Ravi, Jerry Thiel, Janely Villela, Juan Owen Villela, Eric MacDonald, Alan Alemán, Brandon Lamoncha, Brian Vuksanovich, Rich Lonardo
{"title":"用于砂模铸造的 3D 打印智能模具:监控粘合剂固化","authors":"Nathaniel Bryant, Josh O’Dell, Sairam Ravi, Jerry Thiel, Janely Villela, Juan Owen Villela, Eric MacDonald, Alan Alemán, Brandon Lamoncha, Brian Vuksanovich, Rich Lonardo","doi":"10.1007/s40962-024-01314-8","DOIUrl":null,"url":null,"abstract":"<p>The design freedom of 3D printing allows for new mold designs—not possible with traditional approaches—such as helical sprues and spatially varying lattice castings. However, research on the curing time of printed molds, including the aging, requires more exploration. This study describes the experiments of 3D printed specimens in which embedded environmental sensors were fully encapsulated into sand blocks during an interruption of the binder jetting process. Subsequently, over a 28-day duration, humidity, volatile organic compound (VOC) generation, temperature and barometric pressure were captured for three environmental treatments. Mechanical testing of standard test specimens subjected to the same conditions was conducted. The sand structures held in high (uncontrolled) humidity and at reduced temperature were statistically weaker than a third treatment based on the hypothesis that high humidity and/or low temperatures impede curing.</p>","PeriodicalId":14231,"journal":{"name":"International Journal of Metalcasting","volume":"156 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"3D Printed Smart Mold for Sand Casting: Monitoring Binder Curing\",\"authors\":\"Nathaniel Bryant, Josh O’Dell, Sairam Ravi, Jerry Thiel, Janely Villela, Juan Owen Villela, Eric MacDonald, Alan Alemán, Brandon Lamoncha, Brian Vuksanovich, Rich Lonardo\",\"doi\":\"10.1007/s40962-024-01314-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The design freedom of 3D printing allows for new mold designs—not possible with traditional approaches—such as helical sprues and spatially varying lattice castings. However, research on the curing time of printed molds, including the aging, requires more exploration. This study describes the experiments of 3D printed specimens in which embedded environmental sensors were fully encapsulated into sand blocks during an interruption of the binder jetting process. Subsequently, over a 28-day duration, humidity, volatile organic compound (VOC) generation, temperature and barometric pressure were captured for three environmental treatments. Mechanical testing of standard test specimens subjected to the same conditions was conducted. The sand structures held in high (uncontrolled) humidity and at reduced temperature were statistically weaker than a third treatment based on the hypothesis that high humidity and/or low temperatures impede curing.</p>\",\"PeriodicalId\":14231,\"journal\":{\"name\":\"International Journal of Metalcasting\",\"volume\":\"156 1\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Metalcasting\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1007/s40962-024-01314-8\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Metalcasting","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s40962-024-01314-8","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

三维打印的设计自由度允许采用传统方法无法实现的新型模具设计,例如螺旋浇口和空间变化的晶格铸件。然而,对打印模具固化时间(包括老化)的研究还需要更多探索。本研究介绍了三维打印试样的实验情况,其中嵌入的环境传感器在粘合剂喷射过程中断期间被完全封装到砂块中。随后,在 28 天的持续时间内,对三种环境处理方法的湿度、挥发性有机化合物 (VOC) 生成量、温度和气压进行了采集。在相同条件下对标准试样进行了机械测试。根据高湿度和/或低温会阻碍固化的假设,在高湿度(不受控制)和低温条件下的砂结构在统计学上比第三种处理方法更弱。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
3D Printed Smart Mold for Sand Casting: Monitoring Binder Curing

The design freedom of 3D printing allows for new mold designs—not possible with traditional approaches—such as helical sprues and spatially varying lattice castings. However, research on the curing time of printed molds, including the aging, requires more exploration. This study describes the experiments of 3D printed specimens in which embedded environmental sensors were fully encapsulated into sand blocks during an interruption of the binder jetting process. Subsequently, over a 28-day duration, humidity, volatile organic compound (VOC) generation, temperature and barometric pressure were captured for three environmental treatments. Mechanical testing of standard test specimens subjected to the same conditions was conducted. The sand structures held in high (uncontrolled) humidity and at reduced temperature were statistically weaker than a third treatment based on the hypothesis that high humidity and/or low temperatures impede curing.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Metalcasting
International Journal of Metalcasting 工程技术-冶金工程
CiteScore
4.20
自引率
42.30%
发文量
174
审稿时长
>12 weeks
期刊介绍: The International Journal of Metalcasting is dedicated to leading the transfer of research and technology for the global metalcasting industry. The quarterly publication keeps the latest developments in metalcasting research and technology in front of the scientific leaders in our global industry throughout the year. All papers published in the the journal are approved after a rigorous peer review process. The editorial peer review board represents three international metalcasting groups: academia (metalcasting professors), science and research (personnel from national labs, research and scientific institutions), and industry (leading technical personnel from metalcasting facilities).
期刊最新文献
Effect of Austenitization Time on Corrosion and Wear Resistance in Austempered Ductile Iron From the Editor Numerical Simulation and Experimental Investigation of Microstructure Evolution and Flow Behavior in the Rheological Squeeze Casting Process of A356 Alloy The Effect of N Content on the Microstructure and Wear Resistance of Improved High-Carbon Chromium Bearing Steel Enhanced Classification of Refractory Coatings in Foundries: A VPCA-Based Machine Learning Approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1