Seungho Ryu, Mingu Kang, Kyoungah Cho, Sangsig Kim
{"title":"由非晶铟锡镓锌氧化物薄膜晶体管组成的无电容双晶体管动态随机存取存储器单元,用于倍增累积操作","authors":"Seungho Ryu, Mingu Kang, Kyoungah Cho, Sangsig Kim","doi":"10.1002/admt.202302209","DOIUrl":null,"url":null,"abstract":"<p>Capacitorless two-transistor (2T0C) dynamic random-access memory (DRAM) cells comprising oxide thin-film transistors (TFTs) show potential as low-power and high-density DRAM cells; however, the multiply–accumulate (MAC) operation using these cells is not yet realized. In this study, 2T0C DRAM cells comprising amorphous indium–tin–gallium–zinc oxide TFTs are fabricated for MAC operations. In a 2T0C DRAM cell, one transistor acts as a write transistor and the other as a read transistor, whose gate capacitance corresponds to the data storage capacitance. The cells have a long retention time of 1000 s, which is 10<sup>4</sup> times longer than that of conventional DRAM cells, owing to the extremely low leakage current of the TFTs (1.11 × 10<sup>−18</sup> A µm<sup>−1</sup>). These cells satisfy the original condition for synaptic devices, in which a proportional relationship exists between the input and output. The MAC operation is performed using two cells. This study demonstrates the usefulness of oxide TFTs in artificial neural networks.</p>","PeriodicalId":7292,"journal":{"name":"Advanced Materials Technologies","volume":null,"pages":null},"PeriodicalIF":6.4000,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/admt.202302209","citationCount":"0","resultStr":"{\"title\":\"Capacitorless Two-Transistor Dynamic Random-Access Memory Cells Comprising Amorphous Indium–Tin–Gallium–Zinc Oxide Thin-Film Transistors for the Multiply–Accumulate Operation\",\"authors\":\"Seungho Ryu, Mingu Kang, Kyoungah Cho, Sangsig Kim\",\"doi\":\"10.1002/admt.202302209\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Capacitorless two-transistor (2T0C) dynamic random-access memory (DRAM) cells comprising oxide thin-film transistors (TFTs) show potential as low-power and high-density DRAM cells; however, the multiply–accumulate (MAC) operation using these cells is not yet realized. In this study, 2T0C DRAM cells comprising amorphous indium–tin–gallium–zinc oxide TFTs are fabricated for MAC operations. In a 2T0C DRAM cell, one transistor acts as a write transistor and the other as a read transistor, whose gate capacitance corresponds to the data storage capacitance. The cells have a long retention time of 1000 s, which is 10<sup>4</sup> times longer than that of conventional DRAM cells, owing to the extremely low leakage current of the TFTs (1.11 × 10<sup>−18</sup> A µm<sup>−1</sup>). These cells satisfy the original condition for synaptic devices, in which a proportional relationship exists between the input and output. The MAC operation is performed using two cells. This study demonstrates the usefulness of oxide TFTs in artificial neural networks.</p>\",\"PeriodicalId\":7292,\"journal\":{\"name\":\"Advanced Materials Technologies\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.4000,\"publicationDate\":\"2024-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/admt.202302209\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Materials Technologies\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/admt.202302209\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials Technologies","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/admt.202302209","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
由氧化物薄膜晶体管(TFT)组成的无电容双晶体管(2T0C)动态随机存取存储器(DRAM)电池显示出作为低功耗、高密度 DRAM 电池的潜力;然而,使用这些电池进行乘法累积(MAC)操作尚未实现。本研究制作了由非晶铟锡镓锌氧化物 TFT 组成的 2T0C DRAM 单元,用于 MAC 操作。在 2T0C DRAM 单元中,一个晶体管作为写入晶体管,另一个作为读取晶体管,其栅极电容与数据存储电容相对应。由于 TFT 的漏电流极低(1.11 × 10-18 A µm-1),这种电池的保持时间长达 1000 秒,是传统 DRAM 电池的 104 倍。这些单元符合突触设备的原始条件,即输入和输出之间存在比例关系。MAC 操作通过两个电池完成。这项研究证明了氧化物 TFT 在人工神经网络中的实用性。
Capacitorless Two-Transistor Dynamic Random-Access Memory Cells Comprising Amorphous Indium–Tin–Gallium–Zinc Oxide Thin-Film Transistors for the Multiply–Accumulate Operation
Capacitorless two-transistor (2T0C) dynamic random-access memory (DRAM) cells comprising oxide thin-film transistors (TFTs) show potential as low-power and high-density DRAM cells; however, the multiply–accumulate (MAC) operation using these cells is not yet realized. In this study, 2T0C DRAM cells comprising amorphous indium–tin–gallium–zinc oxide TFTs are fabricated for MAC operations. In a 2T0C DRAM cell, one transistor acts as a write transistor and the other as a read transistor, whose gate capacitance corresponds to the data storage capacitance. The cells have a long retention time of 1000 s, which is 104 times longer than that of conventional DRAM cells, owing to the extremely low leakage current of the TFTs (1.11 × 10−18 A µm−1). These cells satisfy the original condition for synaptic devices, in which a proportional relationship exists between the input and output. The MAC operation is performed using two cells. This study demonstrates the usefulness of oxide TFTs in artificial neural networks.
期刊介绍:
Advanced Materials Technologies Advanced Materials Technologies is the new home for all technology-related materials applications research, with particular focus on advanced device design, fabrication and integration, as well as new technologies based on novel materials. It bridges the gap between fundamental laboratory research and industry.