{"title":"系统风险的多尺度 SUR 估算","authors":"Antonis A. Michis","doi":"10.1515/snde-2023-0017","DOIUrl":null,"url":null,"abstract":"We propose a multiscale version of the seemingly unrelated regressions model, based on wavelet transform-based time series observations. Each regression equation refers to a different time scale, which enables the use of across-scale error covariances in the feasible GLS estimation procedure for efficiency gains. We demonstrate the advantages of the proposed method over OLS with two studies: an empirical study using stock market returns for the main US industrial sectors and a detailed Monte Carlo simulation study with alternative wavelet filters. We also provide explanations for the suitability of the proposed method for estimating long-term systematic risk.","PeriodicalId":501448,"journal":{"name":"Studies in Nonlinear Dynamics & Econometrics","volume":"58 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multiscale SUR Estimation of Systematic Risk\",\"authors\":\"Antonis A. Michis\",\"doi\":\"10.1515/snde-2023-0017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a multiscale version of the seemingly unrelated regressions model, based on wavelet transform-based time series observations. Each regression equation refers to a different time scale, which enables the use of across-scale error covariances in the feasible GLS estimation procedure for efficiency gains. We demonstrate the advantages of the proposed method over OLS with two studies: an empirical study using stock market returns for the main US industrial sectors and a detailed Monte Carlo simulation study with alternative wavelet filters. We also provide explanations for the suitability of the proposed method for estimating long-term systematic risk.\",\"PeriodicalId\":501448,\"journal\":{\"name\":\"Studies in Nonlinear Dynamics & Econometrics\",\"volume\":\"58 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Studies in Nonlinear Dynamics & Econometrics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/snde-2023-0017\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studies in Nonlinear Dynamics & Econometrics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/snde-2023-0017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We propose a multiscale version of the seemingly unrelated regressions model, based on wavelet transform-based time series observations. Each regression equation refers to a different time scale, which enables the use of across-scale error covariances in the feasible GLS estimation procedure for efficiency gains. We demonstrate the advantages of the proposed method over OLS with two studies: an empirical study using stock market returns for the main US industrial sectors and a detailed Monte Carlo simulation study with alternative wavelet filters. We also provide explanations for the suitability of the proposed method for estimating long-term systematic risk.