Lu Han, Lanlan Hou, Xinghua Du, Ye Li, Ruping Liu, Mukhurov Nikolai, Zhicheng Sun
{"title":"电纺丝纳米材料:废水处理应用的有力策略","authors":"Lu Han, Lanlan Hou, Xinghua Du, Ye Li, Ruping Liu, Mukhurov Nikolai, Zhicheng Sun","doi":"10.1007/s11157-024-09686-3","DOIUrl":null,"url":null,"abstract":"<div><p>Wastewater purification has been a longstanding and urgent global environmental concern. Electrospun materials have emerged as a promising solution due to large specific surface area, micro/nano-scale, hierarchical structure and flexible compositional regulation, and ease of functionalization. Making them suitable for a variety of scenarios by enabling strategies of adsorption, catalytic degradation, filtration, and distillation, with benefits of low energy consumption, high efficiency, and simplified processes. This review aims to provide an overview of the design strategies, underlying mechanisms, and application progress of electrospun nanomaterials for wastewater purification. Initially, we introduce electrospinning technology for preparing functional nanomaterials, involving the principles, advantages, and flexible product strategies. Subsequently, recent research progresses in treating wastewater contaminated by oil, dyes, heavy metal ions, and bacteria are discussed, integrating insights into their mechanisms and performance evaluation. In recent years, more than 1000 work articles have been reported annually in this field, showing a booming growth trend. Finally, a summary and outlook are provided, aiming to expedite practical water purification through synergistic collaboration between industry and research, effective materials and device optimization, and advancing new theories and technological innovations.</p></div>","PeriodicalId":754,"journal":{"name":"Reviews in Environmental Science and Bio/Technology","volume":"23 2","pages":"471 - 502"},"PeriodicalIF":8.6000,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electrospinning nanomaterials: a powerful strategy for wastewater treatment applications\",\"authors\":\"Lu Han, Lanlan Hou, Xinghua Du, Ye Li, Ruping Liu, Mukhurov Nikolai, Zhicheng Sun\",\"doi\":\"10.1007/s11157-024-09686-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Wastewater purification has been a longstanding and urgent global environmental concern. Electrospun materials have emerged as a promising solution due to large specific surface area, micro/nano-scale, hierarchical structure and flexible compositional regulation, and ease of functionalization. Making them suitable for a variety of scenarios by enabling strategies of adsorption, catalytic degradation, filtration, and distillation, with benefits of low energy consumption, high efficiency, and simplified processes. This review aims to provide an overview of the design strategies, underlying mechanisms, and application progress of electrospun nanomaterials for wastewater purification. Initially, we introduce electrospinning technology for preparing functional nanomaterials, involving the principles, advantages, and flexible product strategies. Subsequently, recent research progresses in treating wastewater contaminated by oil, dyes, heavy metal ions, and bacteria are discussed, integrating insights into their mechanisms and performance evaluation. In recent years, more than 1000 work articles have been reported annually in this field, showing a booming growth trend. Finally, a summary and outlook are provided, aiming to expedite practical water purification through synergistic collaboration between industry and research, effective materials and device optimization, and advancing new theories and technological innovations.</p></div>\",\"PeriodicalId\":754,\"journal\":{\"name\":\"Reviews in Environmental Science and Bio/Technology\",\"volume\":\"23 2\",\"pages\":\"471 - 502\"},\"PeriodicalIF\":8.6000,\"publicationDate\":\"2024-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reviews in Environmental Science and Bio/Technology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11157-024-09686-3\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reviews in Environmental Science and Bio/Technology","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s11157-024-09686-3","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Electrospinning nanomaterials: a powerful strategy for wastewater treatment applications
Wastewater purification has been a longstanding and urgent global environmental concern. Electrospun materials have emerged as a promising solution due to large specific surface area, micro/nano-scale, hierarchical structure and flexible compositional regulation, and ease of functionalization. Making them suitable for a variety of scenarios by enabling strategies of adsorption, catalytic degradation, filtration, and distillation, with benefits of low energy consumption, high efficiency, and simplified processes. This review aims to provide an overview of the design strategies, underlying mechanisms, and application progress of electrospun nanomaterials for wastewater purification. Initially, we introduce electrospinning technology for preparing functional nanomaterials, involving the principles, advantages, and flexible product strategies. Subsequently, recent research progresses in treating wastewater contaminated by oil, dyes, heavy metal ions, and bacteria are discussed, integrating insights into their mechanisms and performance evaluation. In recent years, more than 1000 work articles have been reported annually in this field, showing a booming growth trend. Finally, a summary and outlook are provided, aiming to expedite practical water purification through synergistic collaboration between industry and research, effective materials and device optimization, and advancing new theories and technological innovations.
期刊介绍:
Reviews in Environmental Science and Bio/Technology is a publication that offers easily comprehensible, reliable, and well-rounded perspectives and evaluations in the realm of environmental science and (bio)technology. It disseminates the most recent progressions and timely compilations of groundbreaking scientific discoveries, technological advancements, practical applications, policy developments, and societal concerns encompassing all facets of environmental science and (bio)technology. Furthermore, it tackles broader aspects beyond the natural sciences, incorporating subjects such as education, funding, policy-making, intellectual property, and societal influence.