MetaGate:利用元数据集成对高维细胞测量数据进行交互式分析

IF 6.7 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Patterns Pub Date : 2024-05-13 DOI:10.1016/j.patter.2024.100989
Eivind Heggernes Ask, Astrid Tschan-Plessl, Hanna Julie Hoel, Arne Kolstad, Harald Holte, Karl-Johan Malmberg
{"title":"MetaGate:利用元数据集成对高维细胞测量数据进行交互式分析","authors":"Eivind Heggernes Ask, Astrid Tschan-Plessl, Hanna Julie Hoel, Arne Kolstad, Harald Holte, Karl-Johan Malmberg","doi":"10.1016/j.patter.2024.100989","DOIUrl":null,"url":null,"abstract":"<p>Flow cytometry is a powerful technology for high-throughput protein quantification at the single-cell level. Technical advances have substantially increased data complexity, but novel bioinformatical tools often show limitations in statistical testing, data sharing, cross-experiment comparability, or clinical data integration. We developed MetaGate as a platform for interactive statistical analysis and visualization of manually gated high-dimensional cytometry data with integration of metadata. MetaGate provides a data reduction algorithm based on a combinatorial gating system that produces a small, portable, and standardized data file. This is subsequently used to produce figures and statistical analyses through a fast web-based user interface. We demonstrate the utility of MetaGate through a comprehensive mass cytometry analysis of peripheral blood immune cells from 28 patients with diffuse large B cell lymphoma along with 17 healthy controls. Through MetaGate analysis, our study identifies key immune cell population changes associated with disease progression.</p>","PeriodicalId":36242,"journal":{"name":"Patterns","volume":"109 1","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MetaGate: Interactive analysis of high-dimensional cytometry data with metadata integration\",\"authors\":\"Eivind Heggernes Ask, Astrid Tschan-Plessl, Hanna Julie Hoel, Arne Kolstad, Harald Holte, Karl-Johan Malmberg\",\"doi\":\"10.1016/j.patter.2024.100989\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Flow cytometry is a powerful technology for high-throughput protein quantification at the single-cell level. Technical advances have substantially increased data complexity, but novel bioinformatical tools often show limitations in statistical testing, data sharing, cross-experiment comparability, or clinical data integration. We developed MetaGate as a platform for interactive statistical analysis and visualization of manually gated high-dimensional cytometry data with integration of metadata. MetaGate provides a data reduction algorithm based on a combinatorial gating system that produces a small, portable, and standardized data file. This is subsequently used to produce figures and statistical analyses through a fast web-based user interface. We demonstrate the utility of MetaGate through a comprehensive mass cytometry analysis of peripheral blood immune cells from 28 patients with diffuse large B cell lymphoma along with 17 healthy controls. Through MetaGate analysis, our study identifies key immune cell population changes associated with disease progression.</p>\",\"PeriodicalId\":36242,\"journal\":{\"name\":\"Patterns\",\"volume\":\"109 1\",\"pages\":\"\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2024-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Patterns\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.patter.2024.100989\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Patterns","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.patter.2024.100989","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

流式细胞术是一种在单细胞水平上进行高通量蛋白质定量的强大技术。技术的进步大大提高了数据的复杂性,但新型生物信息学工具在统计测试、数据共享、跨实验可比性或临床数据整合方面往往存在局限性。我们开发的 MetaGate 是一个平台,用于对人工选通的高维细胞计量数据进行交互式统计分析和可视化,并整合元数据。MetaGate 提供了一种基于组合门控系统的数据缩减算法,可生成小巧、便携和标准化的数据文件。随后,通过一个基于网络的快速用户界面,就能生成图表并进行统计分析。我们通过对 28 名弥漫大 B 细胞淋巴瘤患者和 17 名健康对照者的外周血免疫细胞进行全面的质谱分析,证明了 MetaGate 的实用性。通过 MetaGate 分析,我们的研究确定了与疾病进展相关的关键免疫细胞群变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MetaGate: Interactive analysis of high-dimensional cytometry data with metadata integration

Flow cytometry is a powerful technology for high-throughput protein quantification at the single-cell level. Technical advances have substantially increased data complexity, but novel bioinformatical tools often show limitations in statistical testing, data sharing, cross-experiment comparability, or clinical data integration. We developed MetaGate as a platform for interactive statistical analysis and visualization of manually gated high-dimensional cytometry data with integration of metadata. MetaGate provides a data reduction algorithm based on a combinatorial gating system that produces a small, portable, and standardized data file. This is subsequently used to produce figures and statistical analyses through a fast web-based user interface. We demonstrate the utility of MetaGate through a comprehensive mass cytometry analysis of peripheral blood immune cells from 28 patients with diffuse large B cell lymphoma along with 17 healthy controls. Through MetaGate analysis, our study identifies key immune cell population changes associated with disease progression.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Patterns
Patterns Decision Sciences-Decision Sciences (all)
CiteScore
10.60
自引率
4.60%
发文量
153
审稿时长
19 weeks
期刊介绍:
期刊最新文献
Data-knowledge co-driven innovations in engineering and management. Integration of large language models and federated learning. Decorrelative network architecture for robust electrocardiogram classification. Best holdout assessment is sufficient for cancer transcriptomic model selection. The recent Physics and Chemistry Nobel Prizes, AI, and the convergence of knowledge fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1