{"title":"利用量子相干反馈改善双腔光机系统中的冷却和纠缠性能","authors":"Yuan Chen, Ai-Xi Chen","doi":"10.1002/andp.202400036","DOIUrl":null,"url":null,"abstract":"<p>A theoretical scheme is proposed for improving the performance of cooling and entanglement, where the physical model is based on a double cavity optomechanical system assisted by the field-mediated coherent feedback. The cooling performance is evaluated by calculating the final mean phonon number. The steady-state bipartite entanglement between the optical mode and mechanical mode is measured by the logarithmic negativity. The result manifests that with assistance of the quantum coherent feedback, the mechanical resonator (MR) can be cooled close to its quantum ground state and the steady-state optomechanical entanglement is simultaneously created, all of which are obtained under the condition beyond the resolved sideband. The presented feedback strategy is measurement-independent, which can effectively preserve the quantum coherence of system. The scheme is conducive to relaxing the current experimental condition and it may provide a new path for the optomechanical manipulation involving the low-frequency MR.</p>","PeriodicalId":7896,"journal":{"name":"Annalen der Physik","volume":"536 7","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improving the Performance of Cooling and Entanglement in a Double Cavity Optomechanical System Assisted by the Quantum Coherent Feedback\",\"authors\":\"Yuan Chen, Ai-Xi Chen\",\"doi\":\"10.1002/andp.202400036\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A theoretical scheme is proposed for improving the performance of cooling and entanglement, where the physical model is based on a double cavity optomechanical system assisted by the field-mediated coherent feedback. The cooling performance is evaluated by calculating the final mean phonon number. The steady-state bipartite entanglement between the optical mode and mechanical mode is measured by the logarithmic negativity. The result manifests that with assistance of the quantum coherent feedback, the mechanical resonator (MR) can be cooled close to its quantum ground state and the steady-state optomechanical entanglement is simultaneously created, all of which are obtained under the condition beyond the resolved sideband. The presented feedback strategy is measurement-independent, which can effectively preserve the quantum coherence of system. The scheme is conducive to relaxing the current experimental condition and it may provide a new path for the optomechanical manipulation involving the low-frequency MR.</p>\",\"PeriodicalId\":7896,\"journal\":{\"name\":\"Annalen der Physik\",\"volume\":\"536 7\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annalen der Physik\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/andp.202400036\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annalen der Physik","FirstCategoryId":"101","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/andp.202400036","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Improving the Performance of Cooling and Entanglement in a Double Cavity Optomechanical System Assisted by the Quantum Coherent Feedback
A theoretical scheme is proposed for improving the performance of cooling and entanglement, where the physical model is based on a double cavity optomechanical system assisted by the field-mediated coherent feedback. The cooling performance is evaluated by calculating the final mean phonon number. The steady-state bipartite entanglement between the optical mode and mechanical mode is measured by the logarithmic negativity. The result manifests that with assistance of the quantum coherent feedback, the mechanical resonator (MR) can be cooled close to its quantum ground state and the steady-state optomechanical entanglement is simultaneously created, all of which are obtained under the condition beyond the resolved sideband. The presented feedback strategy is measurement-independent, which can effectively preserve the quantum coherence of system. The scheme is conducive to relaxing the current experimental condition and it may provide a new path for the optomechanical manipulation involving the low-frequency MR.
期刊介绍:
Annalen der Physik (AdP) is one of the world''s most renowned physics journals with an over 225 years'' tradition of excellence. Based on the fame of seminal papers by Einstein, Planck and many others, the journal is now tuned towards today''s most exciting findings including the annual Nobel Lectures. AdP comprises all areas of physics, with particular emphasis on important, significant and highly relevant results. Topics range from fundamental research to forefront applications including dynamic and interdisciplinary fields. The journal covers theory, simulation and experiment, e.g., but not exclusively, in condensed matter, quantum physics, photonics, materials physics, high energy, gravitation and astrophysics. It welcomes Rapid Research Letters, Original Papers, Review and Feature Articles.