含有气溶胶粒子的大气中的雨滴运动

IF 0.9 4区 地球科学 Q4 METEOROLOGY & ATMOSPHERIC SCIENCES Izvestiya Atmospheric and Oceanic Physics Pub Date : 2024-05-14 DOI:10.1134/s0001433824700014
T. R. Amanbaev
{"title":"含有气溶胶粒子的大气中的雨滴运动","authors":"T. R. Amanbaev","doi":"10.1134/s0001433824700014","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>A mathematical model is constructed for the dynamics of a raindrop moving in a gravity field through an atmosphere containing fine particles, taking into account the processes of relaxation of its velocity and the capture of fine particles. It has been established that the equation of motion of a drop in the problem being posed belongs to the class of singularly perturbed equations, for the integration of which it is necessary to involve special algorithms. In the limiting modes of droplet motion, analytical solutions of the problem are obtained that describe the dependence of the droplet velocity and coordinate on time. In the complete formulation, the solutions of the problem are obtained numerically for different values of the defining parameters. The influence of the droplet size on the parameters of its motion in a concentrated aerodispersed mixture has been studied. The dependences of the limiting volume fraction of the solid component in the composition of the drop and the intensity of the precipitation of particles (washed out by the drop) on the earth’s surface on the size of the drop are obtained. A comparison of the calculated, approximate–analytical and experimental dependences of the steady-state rate of fall of a drop on its size has been carried out, and it shows their good agreement.</p>","PeriodicalId":54911,"journal":{"name":"Izvestiya Atmospheric and Oceanic Physics","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rain Drop Motion in an Atmosphere Containing Aerosols Particles\",\"authors\":\"T. R. Amanbaev\",\"doi\":\"10.1134/s0001433824700014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p>A mathematical model is constructed for the dynamics of a raindrop moving in a gravity field through an atmosphere containing fine particles, taking into account the processes of relaxation of its velocity and the capture of fine particles. It has been established that the equation of motion of a drop in the problem being posed belongs to the class of singularly perturbed equations, for the integration of which it is necessary to involve special algorithms. In the limiting modes of droplet motion, analytical solutions of the problem are obtained that describe the dependence of the droplet velocity and coordinate on time. In the complete formulation, the solutions of the problem are obtained numerically for different values of the defining parameters. The influence of the droplet size on the parameters of its motion in a concentrated aerodispersed mixture has been studied. The dependences of the limiting volume fraction of the solid component in the composition of the drop and the intensity of the precipitation of particles (washed out by the drop) on the earth’s surface on the size of the drop are obtained. A comparison of the calculated, approximate–analytical and experimental dependences of the steady-state rate of fall of a drop on its size has been carried out, and it shows their good agreement.</p>\",\"PeriodicalId\":54911,\"journal\":{\"name\":\"Izvestiya Atmospheric and Oceanic Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Izvestiya Atmospheric and Oceanic Physics\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1134/s0001433824700014\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Izvestiya Atmospheric and Oceanic Physics","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1134/s0001433824700014","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

摘要 建立了一个雨滴在重力场中穿过含有细小颗粒的大气层的动力学数学模型,其中考虑了雨滴速度的松弛过程和细小颗粒的捕获过程。已经确定,在所提出的问题中,液滴的运动方程属于奇异扰动方程,对其进行积分需要采用特殊的算法。在液滴运动的极限模式中,可以得到问题的解析解,这些解析解描述了液滴速度和坐标对时间的依赖关系。在完整公式中,问题的解是根据不同的定义参数值数值求得的。研究了液滴大小对其在浓空气分散混合物中运动参数的影响。得出了液滴成分中固体成分的极限体积分数和(被液滴冲出的)颗粒在地球表面的沉淀强度与液滴大小的关系。对液滴的稳态下落速率与液滴大小的关系进行了计算、近似分析和实验比较,结果表明它们非常一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Rain Drop Motion in an Atmosphere Containing Aerosols Particles

Abstract

A mathematical model is constructed for the dynamics of a raindrop moving in a gravity field through an atmosphere containing fine particles, taking into account the processes of relaxation of its velocity and the capture of fine particles. It has been established that the equation of motion of a drop in the problem being posed belongs to the class of singularly perturbed equations, for the integration of which it is necessary to involve special algorithms. In the limiting modes of droplet motion, analytical solutions of the problem are obtained that describe the dependence of the droplet velocity and coordinate on time. In the complete formulation, the solutions of the problem are obtained numerically for different values of the defining parameters. The influence of the droplet size on the parameters of its motion in a concentrated aerodispersed mixture has been studied. The dependences of the limiting volume fraction of the solid component in the composition of the drop and the intensity of the precipitation of particles (washed out by the drop) on the earth’s surface on the size of the drop are obtained. A comparison of the calculated, approximate–analytical and experimental dependences of the steady-state rate of fall of a drop on its size has been carried out, and it shows their good agreement.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.40
自引率
28.60%
发文量
56
审稿时长
6-12 weeks
期刊介绍: Izvestiya, Atmospheric and Oceanic Physics is a journal that publishes original scientific research and review articles on vital issues in the physics of the Earth’s atmosphere and hydrosphere and climate theory. The journal presents results of recent studies of physical processes in the atmosphere and ocean that control climate, weather, and their changes. These studies have possible practical applications. The journal also gives room to the discussion of results obtained in theoretical and experimental studies in various fields of oceanic and atmospheric physics, such as the dynamics of gas and water media, interaction of the atmosphere with the ocean and land surfaces, turbulence theory, heat balance and radiation processes, remote sensing and optics of both media, natural and man-induced climate changes, and the state of the atmosphere and ocean. The journal publishes papers on research techniques used in both media, current scientific information on domestic and foreign events in the physics of the atmosphere and ocean.
期刊最新文献
Bayesian Estimates of Changes in Russian River Runoff in the 21st Century Based on the CMIP6 Ensemble Model Simulations Natural Sinks and Sources of CO2 and CH4 in the Atmosphere of Russian Regions and Their Contribution to Climate Change in the 21st Century Evaluated with the CMIP6 Model Ensemble Influence of Modeling Conditions on the Estimation of the Dry Deposition Velocity of Aerosols on Highly Inhomogeneous Surfaces Dynamics of Air Temperature Changes in the Atmospheric Boundary Layer during the Solar Eclipse of March 29, 2006 Analysis of Noctilucent Cloud Fields According to Ground-Based Network and Airborne Photography Data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1