利用社交媒体帖子中的多语言语言模型,为保护隐私的抑郁检测提供联合学习

IF 6.7 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Patterns Pub Date : 2024-05-13 DOI:10.1016/j.patter.2024.100990
Samar Samir Khalil, Noha S. Tawfik, Marco Spruit
{"title":"利用社交媒体帖子中的多语言语言模型,为保护隐私的抑郁检测提供联合学习","authors":"Samar Samir Khalil, Noha S. Tawfik, Marco Spruit","doi":"10.1016/j.patter.2024.100990","DOIUrl":null,"url":null,"abstract":"<p>The incidences of mental health illnesses, such as suicidal ideation and depression, are increasing, which highlights the urgent need for early detection methods. There is a growing interest in using natural language processing (NLP) models to analyze textual data from patients, but accessing patients’ data for research purposes can be challenging due to privacy concerns. Federated learning (FL) is a promising approach that can balance the need for centralized learning with data ownership sensitivity. In this study, we examine the effectiveness of FL models in detecting depression by using a simulated multilingual dataset. We analyzed social media posts in five different languages with varying sample sizes. Our findings indicate that FL achieves strong performance in most cases while maintaining clients’ privacy for both independent and non-independent client partitioning.</p>","PeriodicalId":36242,"journal":{"name":"Patterns","volume":"9 1","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Federated learning for privacy-preserving depression detection with multilingual language models in social media posts\",\"authors\":\"Samar Samir Khalil, Noha S. Tawfik, Marco Spruit\",\"doi\":\"10.1016/j.patter.2024.100990\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The incidences of mental health illnesses, such as suicidal ideation and depression, are increasing, which highlights the urgent need for early detection methods. There is a growing interest in using natural language processing (NLP) models to analyze textual data from patients, but accessing patients’ data for research purposes can be challenging due to privacy concerns. Federated learning (FL) is a promising approach that can balance the need for centralized learning with data ownership sensitivity. In this study, we examine the effectiveness of FL models in detecting depression by using a simulated multilingual dataset. We analyzed social media posts in five different languages with varying sample sizes. Our findings indicate that FL achieves strong performance in most cases while maintaining clients’ privacy for both independent and non-independent client partitioning.</p>\",\"PeriodicalId\":36242,\"journal\":{\"name\":\"Patterns\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2024-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Patterns\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.patter.2024.100990\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Patterns","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.patter.2024.100990","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

自杀意念和抑郁症等精神疾病的发病率不断上升,这凸显了对早期检测方法的迫切需求。人们对使用自然语言处理(NLP)模型分析患者文本数据的兴趣与日俱增,但由于隐私问题,为研究目的访问患者数据可能具有挑战性。联合学习(FL)是一种很有前景的方法,它能在集中学习需求与数据所有权敏感性之间取得平衡。在本研究中,我们使用一个模拟的多语言数据集来检验 FL 模型在检测抑郁症方面的有效性。我们分析了五种不同语言的社交媒体帖子,样本量各不相同。我们的研究结果表明,在大多数情况下,FL 都能取得很好的性能,同时在独立和非独立客户分区中都能维护客户的隐私。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Federated learning for privacy-preserving depression detection with multilingual language models in social media posts

The incidences of mental health illnesses, such as suicidal ideation and depression, are increasing, which highlights the urgent need for early detection methods. There is a growing interest in using natural language processing (NLP) models to analyze textual data from patients, but accessing patients’ data for research purposes can be challenging due to privacy concerns. Federated learning (FL) is a promising approach that can balance the need for centralized learning with data ownership sensitivity. In this study, we examine the effectiveness of FL models in detecting depression by using a simulated multilingual dataset. We analyzed social media posts in five different languages with varying sample sizes. Our findings indicate that FL achieves strong performance in most cases while maintaining clients’ privacy for both independent and non-independent client partitioning.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Patterns
Patterns Decision Sciences-Decision Sciences (all)
CiteScore
10.60
自引率
4.60%
发文量
153
审稿时长
19 weeks
期刊介绍:
期刊最新文献
Data-knowledge co-driven innovations in engineering and management. Integration of large language models and federated learning. Decorrelative network architecture for robust electrocardiogram classification. Best holdout assessment is sufficient for cancer transcriptomic model selection. The recent Physics and Chemistry Nobel Prizes, AI, and the convergence of knowledge fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1