Ali Raza, Jahan Zeb Hassan, Usman Qumar, Ayesha Zaheer, Zaheer Ud Din Babar, Vincenzo Iannotti, Antonio Cassinese
{"title":"增强二维材料电催化活性的策略:ORR、OER、HER 和 CO2RR","authors":"Ali Raza, Jahan Zeb Hassan, Usman Qumar, Ayesha Zaheer, Zaheer Ud Din Babar, Vincenzo Iannotti, Antonio Cassinese","doi":"10.1016/j.mtadv.2024.100488","DOIUrl":null,"url":null,"abstract":"Electrocatalysis utilizing 2D materials is an encouraging approach for advancing sustainable energy conversion technologies. This review explores the strategies employed to achieve robust electrocatalytic activity of 2D materials in key reactions, namely, the OER, HER, and CORR. The distinct structural and electrical characteristics of 2D materials offer opportunities for rapid catalytic performance, indicating significant energy efficiency and selectivity. We systematically discuss the factors governing the electrocatalytic efficiency of two-dimensional materials, including their intrinsic properties, surface modification techniques, heterostructure engineering, and the role of defects. Furthermore, we summarize the recent advances in experimental and theoretical studies to understand the fundamental mechanisms of 2D materials with respect to their catalytic behavior. For the HER, OER, and ORR, defect engineering, phase engineering, interface engineering, and heteroatom doping techniques have been explored. In addition, in the case of the CORR, surface modification, surface-structure tuning, and electrolyte and electrolyzer optimization strategies were examined. This review emphasizes prospective two-dimensional materials as efficient and sustainable electrocatalysts for energy conversion processes. Moreover, it provides future insights into this rapidly evolving field and highlights the possible challenges. In conclusion, it aims to serve as a remarkable resource for researchers seeking to harness the potential response of two-dimensional materials for sustainable energy conversion applications.","PeriodicalId":48495,"journal":{"name":"Materials Today Advances","volume":"111 1","pages":""},"PeriodicalIF":8.1000,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Strategies for robust electrocatalytic activity of 2D materials: ORR, OER, HER, and CO2RR\",\"authors\":\"Ali Raza, Jahan Zeb Hassan, Usman Qumar, Ayesha Zaheer, Zaheer Ud Din Babar, Vincenzo Iannotti, Antonio Cassinese\",\"doi\":\"10.1016/j.mtadv.2024.100488\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Electrocatalysis utilizing 2D materials is an encouraging approach for advancing sustainable energy conversion technologies. This review explores the strategies employed to achieve robust electrocatalytic activity of 2D materials in key reactions, namely, the OER, HER, and CORR. The distinct structural and electrical characteristics of 2D materials offer opportunities for rapid catalytic performance, indicating significant energy efficiency and selectivity. We systematically discuss the factors governing the electrocatalytic efficiency of two-dimensional materials, including their intrinsic properties, surface modification techniques, heterostructure engineering, and the role of defects. Furthermore, we summarize the recent advances in experimental and theoretical studies to understand the fundamental mechanisms of 2D materials with respect to their catalytic behavior. For the HER, OER, and ORR, defect engineering, phase engineering, interface engineering, and heteroatom doping techniques have been explored. In addition, in the case of the CORR, surface modification, surface-structure tuning, and electrolyte and electrolyzer optimization strategies were examined. This review emphasizes prospective two-dimensional materials as efficient and sustainable electrocatalysts for energy conversion processes. Moreover, it provides future insights into this rapidly evolving field and highlights the possible challenges. In conclusion, it aims to serve as a remarkable resource for researchers seeking to harness the potential response of two-dimensional materials for sustainable energy conversion applications.\",\"PeriodicalId\":48495,\"journal\":{\"name\":\"Materials Today Advances\",\"volume\":\"111 1\",\"pages\":\"\"},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2024-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Today Advances\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.mtadv.2024.100488\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Advances","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.mtadv.2024.100488","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Strategies for robust electrocatalytic activity of 2D materials: ORR, OER, HER, and CO2RR
Electrocatalysis utilizing 2D materials is an encouraging approach for advancing sustainable energy conversion technologies. This review explores the strategies employed to achieve robust electrocatalytic activity of 2D materials in key reactions, namely, the OER, HER, and CORR. The distinct structural and electrical characteristics of 2D materials offer opportunities for rapid catalytic performance, indicating significant energy efficiency and selectivity. We systematically discuss the factors governing the electrocatalytic efficiency of two-dimensional materials, including their intrinsic properties, surface modification techniques, heterostructure engineering, and the role of defects. Furthermore, we summarize the recent advances in experimental and theoretical studies to understand the fundamental mechanisms of 2D materials with respect to their catalytic behavior. For the HER, OER, and ORR, defect engineering, phase engineering, interface engineering, and heteroatom doping techniques have been explored. In addition, in the case of the CORR, surface modification, surface-structure tuning, and electrolyte and electrolyzer optimization strategies were examined. This review emphasizes prospective two-dimensional materials as efficient and sustainable electrocatalysts for energy conversion processes. Moreover, it provides future insights into this rapidly evolving field and highlights the possible challenges. In conclusion, it aims to serve as a remarkable resource for researchers seeking to harness the potential response of two-dimensional materials for sustainable energy conversion applications.
期刊介绍:
Materials Today Advances is a multi-disciplinary, open access journal that aims to connect different communities within materials science. It covers all aspects of materials science and related disciplines, including fundamental and applied research. The focus is on studies with broad impact that can cross traditional subject boundaries. The journal welcomes the submissions of articles at the forefront of materials science, advancing the field. It is part of the Materials Today family and offers authors rigorous peer review, rapid decisions, and high visibility.