{"title":"CNFA:用于橘皮年龄识别的 ConvNeXt 融合注意力模块","authors":"Fuqin Deng, Junwei Li, Lanhui Fu, Chuanbo Qin, Yikui Zhai, Hongmin Wang, Ningbo Yi, Nannan Li, TinLun Lam","doi":"10.1155/2024/6439900","DOIUrl":null,"url":null,"abstract":"<p>Xinhui tangerine peel has valuable medicinal value. The longer it is stored in an appropriate environment, the higher its flavonoid content, resulting in increased medicinal value. In order to correctly identify the age of the tangerine peel, previous studies have mostly used manual identification or physical and chemical analysis, which is a tedious and costly process. This work investigates the automatic age recognition of the tangerine peel based on deep learning and attention mechanisms. We proposed an effective ConvNeXt fusion attention module (CNFA), which consists of three parts, a ConvNeXt block for extracting low-level features’ information and aggregating hierarchical features, a channel squeeze-and-excitation (cSE) block and a spatial squeeze-and-excitation (sSE) block for generating sufficient high-level feature information from both channel and spatial dimensions. To analyze the features of tangerine peel in different ages and evaluate the performance of CNFA module, we conducted comparative experiments using the CNFA-integrated network on the Xinhui tangerine peel dataset. The proposed algorithm is compared with related models of the proposed structure and other attention mechanisms. The experimental results showed that the proposed algorithm had an accuracy of 97.17%, precision of 96.18%, recall of 96.09%, and F1 score of 96.13% for age recognition of the tangerine peel, providing a visual solution for the intelligent development of the tangerine peel industry.</p>","PeriodicalId":15951,"journal":{"name":"Journal of Food Quality","volume":"2024 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CNFA: ConvNeXt Fusion Attention Module for Age Recognition of the Tangerine Peel\",\"authors\":\"Fuqin Deng, Junwei Li, Lanhui Fu, Chuanbo Qin, Yikui Zhai, Hongmin Wang, Ningbo Yi, Nannan Li, TinLun Lam\",\"doi\":\"10.1155/2024/6439900\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Xinhui tangerine peel has valuable medicinal value. The longer it is stored in an appropriate environment, the higher its flavonoid content, resulting in increased medicinal value. In order to correctly identify the age of the tangerine peel, previous studies have mostly used manual identification or physical and chemical analysis, which is a tedious and costly process. This work investigates the automatic age recognition of the tangerine peel based on deep learning and attention mechanisms. We proposed an effective ConvNeXt fusion attention module (CNFA), which consists of three parts, a ConvNeXt block for extracting low-level features’ information and aggregating hierarchical features, a channel squeeze-and-excitation (cSE) block and a spatial squeeze-and-excitation (sSE) block for generating sufficient high-level feature information from both channel and spatial dimensions. To analyze the features of tangerine peel in different ages and evaluate the performance of CNFA module, we conducted comparative experiments using the CNFA-integrated network on the Xinhui tangerine peel dataset. The proposed algorithm is compared with related models of the proposed structure and other attention mechanisms. The experimental results showed that the proposed algorithm had an accuracy of 97.17%, precision of 96.18%, recall of 96.09%, and F1 score of 96.13% for age recognition of the tangerine peel, providing a visual solution for the intelligent development of the tangerine peel industry.</p>\",\"PeriodicalId\":15951,\"journal\":{\"name\":\"Journal of Food Quality\",\"volume\":\"2024 1\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Food Quality\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1155/2024/6439900\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Food Quality","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/2024/6439900","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
CNFA: ConvNeXt Fusion Attention Module for Age Recognition of the Tangerine Peel
Xinhui tangerine peel has valuable medicinal value. The longer it is stored in an appropriate environment, the higher its flavonoid content, resulting in increased medicinal value. In order to correctly identify the age of the tangerine peel, previous studies have mostly used manual identification or physical and chemical analysis, which is a tedious and costly process. This work investigates the automatic age recognition of the tangerine peel based on deep learning and attention mechanisms. We proposed an effective ConvNeXt fusion attention module (CNFA), which consists of three parts, a ConvNeXt block for extracting low-level features’ information and aggregating hierarchical features, a channel squeeze-and-excitation (cSE) block and a spatial squeeze-and-excitation (sSE) block for generating sufficient high-level feature information from both channel and spatial dimensions. To analyze the features of tangerine peel in different ages and evaluate the performance of CNFA module, we conducted comparative experiments using the CNFA-integrated network on the Xinhui tangerine peel dataset. The proposed algorithm is compared with related models of the proposed structure and other attention mechanisms. The experimental results showed that the proposed algorithm had an accuracy of 97.17%, precision of 96.18%, recall of 96.09%, and F1 score of 96.13% for age recognition of the tangerine peel, providing a visual solution for the intelligent development of the tangerine peel industry.
期刊介绍:
Journal of Food Quality is a peer-reviewed, Open Access journal that publishes original research articles as well as review articles related to all aspects of food quality characteristics acceptable to consumers. The journal aims to provide a valuable resource for food scientists, nutritionists, food producers, the public health sector, and governmental and non-governmental agencies with an interest in food quality.