{"title":"掺杂镱的 Ti/Zr-SnO2/PbO2 电极提高了茜素黄 R 的电催化降解能力","authors":"Bi Yang, Guan-Jin Gao, Qing-Dong Miao, Asha Ergu, Guo-Cong Liu, Jiao Zou, Jin-Gang Yu","doi":"10.2174/0115734137302282240422063450","DOIUrl":null,"url":null,"abstract":"Introduction: Electrochemical oxidation of Alizarin Yellow R (AYR) was investigated on Ytterbium (Yb) doped Ti/PbO2 electrodes prepared by an electrodeposition method. Method: The etching of the Ti sheet by using a mixed acid of H2SO4 and TA (volume ratio= 2: 1) for 50 min at 100 °C could produce a suitable interface for further modification. The morphologies, composition, and electrochemical properties of Yb doping on the electrode were characterized by SEM (Scanning Electron Microscopy), EDS (Energy-Dispersive Spectroscopy), Cyclic Voltammetry (CV) and Electrochemical Impedance Spectroscopy (EIS). The introduction of an appropriate intermediate layer, Zr-SnO2, was performed. We also tried to fabricate Ytterbium (Yb) doped Ti/Zr-SnO2/PbO2 electrodes by an electrodeposition method on the intermediate layer of Zr-SnO2. The surface morphology of the Ti/Zr-SnO2/PbO2 electrode was changed due to the Yb doping, which affected the electrocatalytic activity of the modified electrode. Result: The developed Yb-doped Ti/Zr-SnO2/PbO2 electrode showed improved removal efficiencies toward AYR. Conclusion: The effects of current density and initial AYR concentration on the electrochemical oxidation of AYR by Yb-doped Ti/Zr-SnO2/PbO2 were investigated. The removal rate of AYR was 97.3% in 180 min under the conditions of the current density of 60 mA/cm2 , initial AYR concentration of 50.0 mg L-1 , and Na2SO4 concentration of 0.10 mol L-1 .","PeriodicalId":10827,"journal":{"name":"Current Nanoscience","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improved Electrocatalytic Degradation of Alizarin Yellow R by Ti/Zr-SnO2/PbO2 Electrodes Doped with Ytterbium\",\"authors\":\"Bi Yang, Guan-Jin Gao, Qing-Dong Miao, Asha Ergu, Guo-Cong Liu, Jiao Zou, Jin-Gang Yu\",\"doi\":\"10.2174/0115734137302282240422063450\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Introduction: Electrochemical oxidation of Alizarin Yellow R (AYR) was investigated on Ytterbium (Yb) doped Ti/PbO2 electrodes prepared by an electrodeposition method. Method: The etching of the Ti sheet by using a mixed acid of H2SO4 and TA (volume ratio= 2: 1) for 50 min at 100 °C could produce a suitable interface for further modification. The morphologies, composition, and electrochemical properties of Yb doping on the electrode were characterized by SEM (Scanning Electron Microscopy), EDS (Energy-Dispersive Spectroscopy), Cyclic Voltammetry (CV) and Electrochemical Impedance Spectroscopy (EIS). The introduction of an appropriate intermediate layer, Zr-SnO2, was performed. We also tried to fabricate Ytterbium (Yb) doped Ti/Zr-SnO2/PbO2 electrodes by an electrodeposition method on the intermediate layer of Zr-SnO2. The surface morphology of the Ti/Zr-SnO2/PbO2 electrode was changed due to the Yb doping, which affected the electrocatalytic activity of the modified electrode. Result: The developed Yb-doped Ti/Zr-SnO2/PbO2 electrode showed improved removal efficiencies toward AYR. Conclusion: The effects of current density and initial AYR concentration on the electrochemical oxidation of AYR by Yb-doped Ti/Zr-SnO2/PbO2 were investigated. The removal rate of AYR was 97.3% in 180 min under the conditions of the current density of 60 mA/cm2 , initial AYR concentration of 50.0 mg L-1 , and Na2SO4 concentration of 0.10 mol L-1 .\",\"PeriodicalId\":10827,\"journal\":{\"name\":\"Current Nanoscience\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Nanoscience\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.2174/0115734137302282240422063450\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Nanoscience","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.2174/0115734137302282240422063450","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Improved Electrocatalytic Degradation of Alizarin Yellow R by Ti/Zr-SnO2/PbO2 Electrodes Doped with Ytterbium
Introduction: Electrochemical oxidation of Alizarin Yellow R (AYR) was investigated on Ytterbium (Yb) doped Ti/PbO2 electrodes prepared by an electrodeposition method. Method: The etching of the Ti sheet by using a mixed acid of H2SO4 and TA (volume ratio= 2: 1) for 50 min at 100 °C could produce a suitable interface for further modification. The morphologies, composition, and electrochemical properties of Yb doping on the electrode were characterized by SEM (Scanning Electron Microscopy), EDS (Energy-Dispersive Spectroscopy), Cyclic Voltammetry (CV) and Electrochemical Impedance Spectroscopy (EIS). The introduction of an appropriate intermediate layer, Zr-SnO2, was performed. We also tried to fabricate Ytterbium (Yb) doped Ti/Zr-SnO2/PbO2 electrodes by an electrodeposition method on the intermediate layer of Zr-SnO2. The surface morphology of the Ti/Zr-SnO2/PbO2 electrode was changed due to the Yb doping, which affected the electrocatalytic activity of the modified electrode. Result: The developed Yb-doped Ti/Zr-SnO2/PbO2 electrode showed improved removal efficiencies toward AYR. Conclusion: The effects of current density and initial AYR concentration on the electrochemical oxidation of AYR by Yb-doped Ti/Zr-SnO2/PbO2 were investigated. The removal rate of AYR was 97.3% in 180 min under the conditions of the current density of 60 mA/cm2 , initial AYR concentration of 50.0 mg L-1 , and Na2SO4 concentration of 0.10 mol L-1 .
期刊介绍:
Current Nanoscience publishes (a) Authoritative/Mini Reviews, and (b) Original Research and Highlights written by experts covering the most recent advances in nanoscience and nanotechnology. All aspects of the field are represented including nano-structures, nano-bubbles, nano-droplets and nanofluids. Applications of nanoscience in physics, material science, chemistry, synthesis, environmental science, electronics, biomedical nanotechnology, biomedical engineering, biotechnology, medicine and pharmaceuticals are also covered. The journal is essential to all researches involved in nanoscience and its applied and fundamental areas of science, chemistry, physics, material science, engineering and medicine.
Current Nanoscience also welcomes submissions on the following topics of Nanoscience and Nanotechnology:
Nanoelectronics and photonics
Advanced Nanomaterials
Nanofabrication and measurement
Nanobiotechnology and nanomedicine
Nanotechnology for energy
Sensors and actuator
Computational nanoscience and technology.