{"title":"掺 La 的 Cu-CoFe2O4 尖晶铁氧体的晶体学、形态学、磁性和电化学性质研究","authors":"Mohd Rouf Khan, Hamnesh Mahajan, A. K. Srivastava","doi":"10.1002/crat.202300356","DOIUrl":null,"url":null,"abstract":"<p>This research presents the successful synthesis of Cu<sub>0.79</sub>Co<sub>0.21</sub>La<sub>x</sub>Fe<sub>2-x</sub>O<sub>4</sub> (0.0 ≤ x ≤ 0.8) (spinel ferrite) nanoparticles via the sol-gel auto combustion technique, with varying La<sup>3+</sup> dopant concentrations. In this study, the estimated crystallite size (D) is found to be in the range of (27.92–40.90) nm. The microstructural parameter determination in XRD data is improved using Rietveld refinement. Fourier Transform Infrared Spectroscopy (FTIR) spectra exhibit two distinct metal stretching vibrational bands within (400–600) cm<sup>−1</sup> range, a characteristic fingerprint region for all ferrites. Field Emission Scanning Electron Microscopy (FESEM) analysis reveals the agglomeration of particles due to magnetic interactions and non-uniform distribution of average particle sizes ranging from (1.06–1.87) µm. Energy Dispersive X-Ray Analysis (EDX) validates the chemical composition's accuracy. Owing to the dilution effect resulting from the introduction of non-magnetic La<sup>3+</sup> ions into the ferrite structure, there is a reduction in the saturation magnetization value, decreasing from 37.28 to 6.24 emu g<sup>−1</sup> in the Vibrating Sample Magnetometery (VSM) study. The electrochemical analysis reveals the impressive electrochemical characteristics of the newly developed ferrites, highlighting a remarkable specific capacitance of 270.0 F g<sup>−1</sup>. This finding positions them as highly promising contenders for a wide range of energy storage supercapacitor applications.</p>","PeriodicalId":48935,"journal":{"name":"Crystal Research and Technology","volume":"59 7","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation of Crystallographic, Morphological, Magnetic and Electrochemical Properties of La-Doped Cu-CoFe2O4 Spinel Ferrites\",\"authors\":\"Mohd Rouf Khan, Hamnesh Mahajan, A. K. Srivastava\",\"doi\":\"10.1002/crat.202300356\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This research presents the successful synthesis of Cu<sub>0.79</sub>Co<sub>0.21</sub>La<sub>x</sub>Fe<sub>2-x</sub>O<sub>4</sub> (0.0 ≤ x ≤ 0.8) (spinel ferrite) nanoparticles via the sol-gel auto combustion technique, with varying La<sup>3+</sup> dopant concentrations. In this study, the estimated crystallite size (D) is found to be in the range of (27.92–40.90) nm. The microstructural parameter determination in XRD data is improved using Rietveld refinement. Fourier Transform Infrared Spectroscopy (FTIR) spectra exhibit two distinct metal stretching vibrational bands within (400–600) cm<sup>−1</sup> range, a characteristic fingerprint region for all ferrites. Field Emission Scanning Electron Microscopy (FESEM) analysis reveals the agglomeration of particles due to magnetic interactions and non-uniform distribution of average particle sizes ranging from (1.06–1.87) µm. Energy Dispersive X-Ray Analysis (EDX) validates the chemical composition's accuracy. Owing to the dilution effect resulting from the introduction of non-magnetic La<sup>3+</sup> ions into the ferrite structure, there is a reduction in the saturation magnetization value, decreasing from 37.28 to 6.24 emu g<sup>−1</sup> in the Vibrating Sample Magnetometery (VSM) study. The electrochemical analysis reveals the impressive electrochemical characteristics of the newly developed ferrites, highlighting a remarkable specific capacitance of 270.0 F g<sup>−1</sup>. This finding positions them as highly promising contenders for a wide range of energy storage supercapacitor applications.</p>\",\"PeriodicalId\":48935,\"journal\":{\"name\":\"Crystal Research and Technology\",\"volume\":\"59 7\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Crystal Research and Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/crat.202300356\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Chemistry\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Crystal Research and Technology","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/crat.202300356","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Chemistry","Score":null,"Total":0}
引用次数: 0
摘要
本研究通过溶胶-凝胶自燃技术,成功合成了 Cu0.79Co0.21LaxFe2-xO4 (0.0 ≤ x ≤ 0.8)(尖晶石铁氧体)纳米粒子,其中掺杂了不同浓度的 La3+。在这项研究中,估计的晶粒尺寸(D)范围为(27.92-40.90)纳米。利用里特维尔德细化法改进了 XRD 数据中微观结构参数的确定。傅立叶变换红外光谱(FTIR)显示在(400-600)cm-1 范围内有两条明显的金属伸缩振动带,这是所有铁氧体的特征指纹区。场发射扫描电子显微镜(FESEM)分析表明,颗粒因磁性相互作用而聚集,平均粒径分布不均匀,在(1.06-1.87)微米之间。能量色散 X 射线分析(EDX)验证了化学成分的准确性。由于在铁氧体结构中引入了非磁性的 La3+ 离子而产生的稀释效应,饱和磁化值有所降低,在振动样品磁强计(VSM)研究中从 37.28 降至 6.24 emu g-1。电化学分析表明,新开发的铁氧体具有令人印象深刻的电化学特性,比电容高达 270.0 F g-1。这一发现将它们定位为具有广泛储能应用前景的超级电容器。
Investigation of Crystallographic, Morphological, Magnetic and Electrochemical Properties of La-Doped Cu-CoFe2O4 Spinel Ferrites
This research presents the successful synthesis of Cu0.79Co0.21LaxFe2-xO4 (0.0 ≤ x ≤ 0.8) (spinel ferrite) nanoparticles via the sol-gel auto combustion technique, with varying La3+ dopant concentrations. In this study, the estimated crystallite size (D) is found to be in the range of (27.92–40.90) nm. The microstructural parameter determination in XRD data is improved using Rietveld refinement. Fourier Transform Infrared Spectroscopy (FTIR) spectra exhibit two distinct metal stretching vibrational bands within (400–600) cm−1 range, a characteristic fingerprint region for all ferrites. Field Emission Scanning Electron Microscopy (FESEM) analysis reveals the agglomeration of particles due to magnetic interactions and non-uniform distribution of average particle sizes ranging from (1.06–1.87) µm. Energy Dispersive X-Ray Analysis (EDX) validates the chemical composition's accuracy. Owing to the dilution effect resulting from the introduction of non-magnetic La3+ ions into the ferrite structure, there is a reduction in the saturation magnetization value, decreasing from 37.28 to 6.24 emu g−1 in the Vibrating Sample Magnetometery (VSM) study. The electrochemical analysis reveals the impressive electrochemical characteristics of the newly developed ferrites, highlighting a remarkable specific capacitance of 270.0 F g−1. This finding positions them as highly promising contenders for a wide range of energy storage supercapacitor applications.
期刊介绍:
The journal Crystal Research and Technology is a pure online Journal (since 2012).
Crystal Research and Technology is an international journal examining all aspects of research within experimental, industrial, and theoretical crystallography. The journal covers the relevant aspects of
-crystal growth techniques and phenomena (including bulk growth, thin films)
-modern crystalline materials (e.g. smart materials, nanocrystals, quasicrystals, liquid crystals)
-industrial crystallisation
-application of crystals in materials science, electronics, data storage, and optics
-experimental, simulation and theoretical studies of the structural properties of crystals
-crystallographic computing