沙尘迁移事件期间阿拉伯海上空云微观物理原位观测数据

IF 2.5 4区 环境科学与生态学 Q3 ENVIRONMENTAL SCIENCES Environmental Research Communications Pub Date : 2024-05-10 DOI:10.1088/2515-7620/ad443d
Sudarsan Bera, Sachin Patade, Thara Prabhakaran
{"title":"沙尘迁移事件期间阿拉伯海上空云微观物理原位观测数据","authors":"Sudarsan Bera, Sachin Patade, Thara Prabhakaran","doi":"10.1088/2515-7620/ad443d","DOIUrl":null,"url":null,"abstract":"The unique <italic toggle=\"yes\">in situ</italic> measurements of clouds and precipitation within the shallow and deep cumulus over the north-eastern Arabian Sea region during the Indian monsoon are illustrated in this study with a focus on droplet spectral parameters. The observational period showed a significant incursion of Arabian dust and the presence of giant cloud condensation nuclei (GCCN), modifying the cloud and precipitation spectral properties. Warm rain microphysics supported the mixed-phase development in these clouds and exhibited hydrometeors of snow, graupel and large aggregates as part of ice processes. Cloud base droplet number concentration is about 142 <inline-formula>\n<tex-math>\n<?CDATA $\\pm $?>\n</tex-math>\n<mml:math overflow=\"scroll\"><mml:mo>±</mml:mo></mml:math>\n<inline-graphic xlink:href=\"ercad443dieqn1.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula> 79 cm<sup>−3</sup> which is one third of the cloud condensation nuclei (CCN) number concentration at 0.2% supersaturation. A rapid broadening of droplet size distribution (DSD) near to the cloud base was noted in contrast to polluted continental clouds. Relationship between the relative dispersion (<inline-formula>\n<tex-math>\n<?CDATA $\\varepsilon ;$?>\n</tex-math>\n<mml:math overflow=\"scroll\"><mml:mi>ε</mml:mi><mml:mo>;</mml:mo></mml:math>\n<inline-graphic xlink:href=\"ercad443dieqn2.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula> the ratio of DSD spectral width (<inline-formula>\n<tex-math>\n<?CDATA $\\sigma $?>\n</tex-math>\n<mml:math overflow=\"scroll\"><mml:mi>σ</mml:mi></mml:math>\n<inline-graphic xlink:href=\"ercad443dieqn3.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula>) to mean radius (<inline-formula>\n<tex-math>\n<?CDATA ${r}_{m}$?>\n</tex-math>\n<mml:math overflow=\"scroll\"><mml:msub><mml:mrow><mml:mi>r</mml:mi></mml:mrow><mml:mrow><mml:mi>m</mml:mi></mml:mrow></mml:msub></mml:math>\n<inline-graphic xlink:href=\"ercad443dieqn4.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula>)) and liquid water adiabatic fraction (AF) indicates that the entrainment effect has increased relative dispersion significantly (2–3 times larger) in these clouds. Effective radius (<inline-formula>\n<tex-math>\n<?CDATA ${r}_{{eff}}$?>\n</tex-math>\n<mml:math overflow=\"scroll\"><mml:msub><mml:mrow><mml:mi>r</mml:mi></mml:mrow><mml:mrow><mml:mi mathvariant=\"italic\">eff</mml:mi></mml:mrow></mml:msub></mml:math>\n<inline-graphic xlink:href=\"ercad443dieqn5.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula>) is found to be proportional to mean volume radius (<inline-formula>\n<tex-math>\n<?CDATA ${r}_{v}$?>\n</tex-math>\n<mml:math overflow=\"scroll\"><mml:msub><mml:mrow><mml:mi>r</mml:mi></mml:mrow><mml:mrow><mml:mi>v</mml:mi></mml:mrow></mml:msub></mml:math>\n<inline-graphic xlink:href=\"ercad443dieqn6.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula>) with a proportionality constant (<inline-formula>\n<tex-math>\n<?CDATA $\\beta $?>\n</tex-math>\n<mml:math overflow=\"scroll\"><mml:mi>β</mml:mi></mml:math>\n<inline-graphic xlink:href=\"ercad443dieqn7.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula>) that varies between 1.0–1.6, depending on the spectral dispersion parameter. Drop size distributions for the small cloud droplets with size range 2–50 <inline-formula>\n<tex-math>\n<?CDATA $\\mu $?>\n</tex-math>\n<mml:math overflow=\"scroll\"><mml:mi>μ</mml:mi></mml:math>\n<inline-graphic xlink:href=\"ercad443dieqn8.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula>m and the large drizzle drops (or ice hydrometeors) with size range 100–6400 <inline-formula>\n<tex-math>\n<?CDATA $\\mu $?>\n</tex-math>\n<mml:math overflow=\"scroll\"><mml:mi>μ</mml:mi></mml:math>\n<inline-graphic xlink:href=\"ercad443dieqn9.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula>m are parameterized using the gamma function distributions useful for large-scale cloud models.","PeriodicalId":48496,"journal":{"name":"Environmental Research Communications","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"In-situ observations of cloud microphysics over Arabian Sea during dust transport events\",\"authors\":\"Sudarsan Bera, Sachin Patade, Thara Prabhakaran\",\"doi\":\"10.1088/2515-7620/ad443d\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The unique <italic toggle=\\\"yes\\\">in situ</italic> measurements of clouds and precipitation within the shallow and deep cumulus over the north-eastern Arabian Sea region during the Indian monsoon are illustrated in this study with a focus on droplet spectral parameters. The observational period showed a significant incursion of Arabian dust and the presence of giant cloud condensation nuclei (GCCN), modifying the cloud and precipitation spectral properties. Warm rain microphysics supported the mixed-phase development in these clouds and exhibited hydrometeors of snow, graupel and large aggregates as part of ice processes. Cloud base droplet number concentration is about 142 <inline-formula>\\n<tex-math>\\n<?CDATA $\\\\pm $?>\\n</tex-math>\\n<mml:math overflow=\\\"scroll\\\"><mml:mo>±</mml:mo></mml:math>\\n<inline-graphic xlink:href=\\\"ercad443dieqn1.gif\\\" xlink:type=\\\"simple\\\"></inline-graphic>\\n</inline-formula> 79 cm<sup>−3</sup> which is one third of the cloud condensation nuclei (CCN) number concentration at 0.2% supersaturation. A rapid broadening of droplet size distribution (DSD) near to the cloud base was noted in contrast to polluted continental clouds. Relationship between the relative dispersion (<inline-formula>\\n<tex-math>\\n<?CDATA $\\\\varepsilon ;$?>\\n</tex-math>\\n<mml:math overflow=\\\"scroll\\\"><mml:mi>ε</mml:mi><mml:mo>;</mml:mo></mml:math>\\n<inline-graphic xlink:href=\\\"ercad443dieqn2.gif\\\" xlink:type=\\\"simple\\\"></inline-graphic>\\n</inline-formula> the ratio of DSD spectral width (<inline-formula>\\n<tex-math>\\n<?CDATA $\\\\sigma $?>\\n</tex-math>\\n<mml:math overflow=\\\"scroll\\\"><mml:mi>σ</mml:mi></mml:math>\\n<inline-graphic xlink:href=\\\"ercad443dieqn3.gif\\\" xlink:type=\\\"simple\\\"></inline-graphic>\\n</inline-formula>) to mean radius (<inline-formula>\\n<tex-math>\\n<?CDATA ${r}_{m}$?>\\n</tex-math>\\n<mml:math overflow=\\\"scroll\\\"><mml:msub><mml:mrow><mml:mi>r</mml:mi></mml:mrow><mml:mrow><mml:mi>m</mml:mi></mml:mrow></mml:msub></mml:math>\\n<inline-graphic xlink:href=\\\"ercad443dieqn4.gif\\\" xlink:type=\\\"simple\\\"></inline-graphic>\\n</inline-formula>)) and liquid water adiabatic fraction (AF) indicates that the entrainment effect has increased relative dispersion significantly (2–3 times larger) in these clouds. Effective radius (<inline-formula>\\n<tex-math>\\n<?CDATA ${r}_{{eff}}$?>\\n</tex-math>\\n<mml:math overflow=\\\"scroll\\\"><mml:msub><mml:mrow><mml:mi>r</mml:mi></mml:mrow><mml:mrow><mml:mi mathvariant=\\\"italic\\\">eff</mml:mi></mml:mrow></mml:msub></mml:math>\\n<inline-graphic xlink:href=\\\"ercad443dieqn5.gif\\\" xlink:type=\\\"simple\\\"></inline-graphic>\\n</inline-formula>) is found to be proportional to mean volume radius (<inline-formula>\\n<tex-math>\\n<?CDATA ${r}_{v}$?>\\n</tex-math>\\n<mml:math overflow=\\\"scroll\\\"><mml:msub><mml:mrow><mml:mi>r</mml:mi></mml:mrow><mml:mrow><mml:mi>v</mml:mi></mml:mrow></mml:msub></mml:math>\\n<inline-graphic xlink:href=\\\"ercad443dieqn6.gif\\\" xlink:type=\\\"simple\\\"></inline-graphic>\\n</inline-formula>) with a proportionality constant (<inline-formula>\\n<tex-math>\\n<?CDATA $\\\\beta $?>\\n</tex-math>\\n<mml:math overflow=\\\"scroll\\\"><mml:mi>β</mml:mi></mml:math>\\n<inline-graphic xlink:href=\\\"ercad443dieqn7.gif\\\" xlink:type=\\\"simple\\\"></inline-graphic>\\n</inline-formula>) that varies between 1.0–1.6, depending on the spectral dispersion parameter. Drop size distributions for the small cloud droplets with size range 2–50 <inline-formula>\\n<tex-math>\\n<?CDATA $\\\\mu $?>\\n</tex-math>\\n<mml:math overflow=\\\"scroll\\\"><mml:mi>μ</mml:mi></mml:math>\\n<inline-graphic xlink:href=\\\"ercad443dieqn8.gif\\\" xlink:type=\\\"simple\\\"></inline-graphic>\\n</inline-formula>m and the large drizzle drops (or ice hydrometeors) with size range 100–6400 <inline-formula>\\n<tex-math>\\n<?CDATA $\\\\mu $?>\\n</tex-math>\\n<mml:math overflow=\\\"scroll\\\"><mml:mi>μ</mml:mi></mml:math>\\n<inline-graphic xlink:href=\\\"ercad443dieqn9.gif\\\" xlink:type=\\\"simple\\\"></inline-graphic>\\n</inline-formula>m are parameterized using the gamma function distributions useful for large-scale cloud models.\",\"PeriodicalId\":48496,\"journal\":{\"name\":\"Environmental Research Communications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Research Communications\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1088/2515-7620/ad443d\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Research Communications","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1088/2515-7620/ad443d","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

本研究对印度季风期间阿拉伯海东北部地区浅积云和深积云内的云层和降水进行了独特的实地测量,重点是液滴光谱参数。观测期间,阿拉伯尘埃的大量入侵和巨型云凝结核(GCCN)的存在改变了云和降水的光谱特性。暖雨微观物理支持了这些云中的混合相发展,并显示出作为冰过程一部分的雪、灰凝胶和大聚合体的水介质。云基液滴数量浓度约为 142 ± 79 cm-3,是过饱和度为 0.2% 时云凝结核(CCN)数量浓度的三分之一。与受污染的大陆云相比,云基附近的液滴大小分布(DSD)迅速扩大。相对分散度(ε;DSD 光谱宽度 (σ) 与平均半径 (rm) 之比)与液态水绝热分数 (AF) 之间的关系表明,夹带效应显著增加了这些云中的相对分散度(2-3 倍)。研究发现,有效半径 (reff) 与平均体积半径 (rv) 成正比,比例常数 (β)在 1.0-1.6 之间变化,具体取决于光谱弥散参数。对于粒径范围为 2-50 μm 的小云滴和粒径范围为 100-6400 μm 的大雨滴(或冰流体),使用对大尺度云模型有用的伽马函数分布对其粒径分布进行了参数化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
In-situ observations of cloud microphysics over Arabian Sea during dust transport events
The unique in situ measurements of clouds and precipitation within the shallow and deep cumulus over the north-eastern Arabian Sea region during the Indian monsoon are illustrated in this study with a focus on droplet spectral parameters. The observational period showed a significant incursion of Arabian dust and the presence of giant cloud condensation nuclei (GCCN), modifying the cloud and precipitation spectral properties. Warm rain microphysics supported the mixed-phase development in these clouds and exhibited hydrometeors of snow, graupel and large aggregates as part of ice processes. Cloud base droplet number concentration is about 142 ± 79 cm−3 which is one third of the cloud condensation nuclei (CCN) number concentration at 0.2% supersaturation. A rapid broadening of droplet size distribution (DSD) near to the cloud base was noted in contrast to polluted continental clouds. Relationship between the relative dispersion ( ε; the ratio of DSD spectral width ( σ ) to mean radius ( rm )) and liquid water adiabatic fraction (AF) indicates that the entrainment effect has increased relative dispersion significantly (2–3 times larger) in these clouds. Effective radius ( reff ) is found to be proportional to mean volume radius ( rv ) with a proportionality constant ( β ) that varies between 1.0–1.6, depending on the spectral dispersion parameter. Drop size distributions for the small cloud droplets with size range 2–50 μ m and the large drizzle drops (or ice hydrometeors) with size range 100–6400 μ m are parameterized using the gamma function distributions useful for large-scale cloud models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Environmental Research Communications
Environmental Research Communications ENVIRONMENTAL SCIENCES-
CiteScore
3.50
自引率
0.00%
发文量
136
期刊最新文献
Evaluating D-InSAR performance to detect small water level fluctuations in two small lakes in Sweden Study on the characteristics and scenario simulation of land use change in the Chaohu Lake Basin, China Economic and environmental assessment of the Korea urban railway and its greenhouse gas mitigation potential Optimisation of decision-making on risk management strategy for the hydromelioration systems in biosphere reserves SMOS captures variations in SSS fronts during El Niño and La Niña
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1