用于实时训练深度神经网络的随机遗传算法 VLSI 架构

Anirban Chakraborty, Sayantan Dutta, Indrajit Chakrabarti, Ayan Banerjee
{"title":"用于实时训练深度神经网络的随机遗传算法 VLSI 架构","authors":"Anirban Chakraborty, Sayantan Dutta, Indrajit Chakrabarti, Ayan Banerjee","doi":"10.1007/s12046-024-02527-7","DOIUrl":null,"url":null,"abstract":"<p>In this letter, attempt has been made to successfully design a pipelined VLSI architecture for the computation of genetic algorithm (GA). The concept of stochastic computing is uniquely exploited in the proposed pipelined GA architecture to attain significant area and power efficiency with reasonably high speed of operation. The prototype 8-bit fixed point GA architecture is realised using VHDL on Xilinx Vivado 2020.3 and implemented on Zynq Ultrascale+ MPSoC (XCZU7EV-2FFVC1156) to train an arbitrary 4:3:2 fully connected neural network in real-time. The performance of the prototype GA architecture in case of real-time training of the neural network outshines the software and other existing GA architectures. The proposed GA-trained 4:3:2 network exhibits 6<i>X</i> reduction in training time and 720<i>X</i> increase in power efficiency, only at the cost of <span>\\(0.06\\%\\)</span> reduction in accuracy with respect to other existing works and software in case of the image classification of MNIST data-set.\n</p>","PeriodicalId":21498,"journal":{"name":"Sādhanā","volume":"71 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"VLSI architecture of stochastic genetic algorithm for real time training of deep neural network\",\"authors\":\"Anirban Chakraborty, Sayantan Dutta, Indrajit Chakrabarti, Ayan Banerjee\",\"doi\":\"10.1007/s12046-024-02527-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this letter, attempt has been made to successfully design a pipelined VLSI architecture for the computation of genetic algorithm (GA). The concept of stochastic computing is uniquely exploited in the proposed pipelined GA architecture to attain significant area and power efficiency with reasonably high speed of operation. The prototype 8-bit fixed point GA architecture is realised using VHDL on Xilinx Vivado 2020.3 and implemented on Zynq Ultrascale+ MPSoC (XCZU7EV-2FFVC1156) to train an arbitrary 4:3:2 fully connected neural network in real-time. The performance of the prototype GA architecture in case of real-time training of the neural network outshines the software and other existing GA architectures. The proposed GA-trained 4:3:2 network exhibits 6<i>X</i> reduction in training time and 720<i>X</i> increase in power efficiency, only at the cost of <span>\\\\(0.06\\\\%\\\\)</span> reduction in accuracy with respect to other existing works and software in case of the image classification of MNIST data-set.\\n</p>\",\"PeriodicalId\":21498,\"journal\":{\"name\":\"Sādhanā\",\"volume\":\"71 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sādhanā\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s12046-024-02527-7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sādhanā","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12046-024-02527-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在这封信中,我们尝试为遗传算法(GA)的计算成功设计了一种流水线 VLSI 架构。在拟议的流水线 GA 架构中,随机计算的概念得到了独特的利用,从而在合理的高速运行条件下实现了显著的面积和功耗效率。8 位定点 GA 架构原型在 Xilinx Vivado 2020.3 上使用 VHDL 实现,并在 Zynq Ultrascale+ MPSoC (XCZU7EV-2FFVC1156) 上实施,以实时训练任意 4:3:2 全连接神经网络。原型 GA 架构在实时训练神经网络方面的性能优于软件和其他现有 GA 架构。在对 MNIST 数据集进行图像分类时,与其他现有作品和软件相比,拟议的 GA 训练 4:3:2 网络的训练时间缩短了 6 倍,能效提高了 720 倍,但准确率却降低了 0.06%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
VLSI architecture of stochastic genetic algorithm for real time training of deep neural network

In this letter, attempt has been made to successfully design a pipelined VLSI architecture for the computation of genetic algorithm (GA). The concept of stochastic computing is uniquely exploited in the proposed pipelined GA architecture to attain significant area and power efficiency with reasonably high speed of operation. The prototype 8-bit fixed point GA architecture is realised using VHDL on Xilinx Vivado 2020.3 and implemented on Zynq Ultrascale+ MPSoC (XCZU7EV-2FFVC1156) to train an arbitrary 4:3:2 fully connected neural network in real-time. The performance of the prototype GA architecture in case of real-time training of the neural network outshines the software and other existing GA architectures. The proposed GA-trained 4:3:2 network exhibits 6X reduction in training time and 720X increase in power efficiency, only at the cost of \(0.06\%\) reduction in accuracy with respect to other existing works and software in case of the image classification of MNIST data-set.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Buckling performance optimization of sub-stiffened composite panels with straight and curvilinear sub-stiffeners Transformer-based Pouranic topic classification in Indian mythology Influence of non-stoichiometric solutions on the THF hydrate growth: chemical affinity modelling and visualization Development and analysis of Hastelloy-X alloy butt joint made by laser beam welding Comparative analysis of a remotely-controlled wetland paddy seeder and conventional drum seeder
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1