{"title":"信息流在线审计","authors":"Mor Oren-Loberman;Vered Azar;Wasim Huleihel","doi":"10.1109/TSIPN.2024.3399558","DOIUrl":null,"url":null,"abstract":"Modern social media platforms play an important role in facilitating rapid dissemination of information through their massive user networks. Fake news, misinformation, and unverifiable facts on social media platforms propagate disharmony and affect society. In this paper, we consider the problem of online auditing of information flow/propagation with the goal of classifying news items as fake or genuine. Specifically, driven by experiential studies on real-world social media platforms, we propose a probabilistic Markovian information spread model over networks modeled by graphs. We then formulate our inference task as a certain sequential detection problem with the goal of minimizing the combination of the error probability and the time it takes to achieve the correct decision. For this model, we find the optimal detection algorithm minimizing the aforementioned risk and prove several statistical guarantees. We then test our algorithm over real-world datasets. To that end, we first construct an offline algorithm for learning the probabilistic information spreading model, and then apply our optimal detection algorithm. Experimental study show that our algorithm outperforms state-of-the-art misinformation detection algorithms in terms of accuracy and detection time.","PeriodicalId":56268,"journal":{"name":"IEEE Transactions on Signal and Information Processing over Networks","volume":"10 ","pages":"487-499"},"PeriodicalIF":3.0000,"publicationDate":"2024-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Online Auditing of Information Flow\",\"authors\":\"Mor Oren-Loberman;Vered Azar;Wasim Huleihel\",\"doi\":\"10.1109/TSIPN.2024.3399558\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Modern social media platforms play an important role in facilitating rapid dissemination of information through their massive user networks. Fake news, misinformation, and unverifiable facts on social media platforms propagate disharmony and affect society. In this paper, we consider the problem of online auditing of information flow/propagation with the goal of classifying news items as fake or genuine. Specifically, driven by experiential studies on real-world social media platforms, we propose a probabilistic Markovian information spread model over networks modeled by graphs. We then formulate our inference task as a certain sequential detection problem with the goal of minimizing the combination of the error probability and the time it takes to achieve the correct decision. For this model, we find the optimal detection algorithm minimizing the aforementioned risk and prove several statistical guarantees. We then test our algorithm over real-world datasets. To that end, we first construct an offline algorithm for learning the probabilistic information spreading model, and then apply our optimal detection algorithm. Experimental study show that our algorithm outperforms state-of-the-art misinformation detection algorithms in terms of accuracy and detection time.\",\"PeriodicalId\":56268,\"journal\":{\"name\":\"IEEE Transactions on Signal and Information Processing over Networks\",\"volume\":\"10 \",\"pages\":\"487-499\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-03-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Signal and Information Processing over Networks\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10528895/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Signal and Information Processing over Networks","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10528895/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Modern social media platforms play an important role in facilitating rapid dissemination of information through their massive user networks. Fake news, misinformation, and unverifiable facts on social media platforms propagate disharmony and affect society. In this paper, we consider the problem of online auditing of information flow/propagation with the goal of classifying news items as fake or genuine. Specifically, driven by experiential studies on real-world social media platforms, we propose a probabilistic Markovian information spread model over networks modeled by graphs. We then formulate our inference task as a certain sequential detection problem with the goal of minimizing the combination of the error probability and the time it takes to achieve the correct decision. For this model, we find the optimal detection algorithm minimizing the aforementioned risk and prove several statistical guarantees. We then test our algorithm over real-world datasets. To that end, we first construct an offline algorithm for learning the probabilistic information spreading model, and then apply our optimal detection algorithm. Experimental study show that our algorithm outperforms state-of-the-art misinformation detection algorithms in terms of accuracy and detection time.
期刊介绍:
The IEEE Transactions on Signal and Information Processing over Networks publishes high-quality papers that extend the classical notions of processing of signals defined over vector spaces (e.g. time and space) to processing of signals and information (data) defined over networks, potentially dynamically varying. In signal processing over networks, the topology of the network may define structural relationships in the data, or may constrain processing of the data. Topics include distributed algorithms for filtering, detection, estimation, adaptation and learning, model selection, data fusion, and diffusion or evolution of information over such networks, and applications of distributed signal processing.