Ariane Pouliot-Drouin, Thierry Niaison, Sophie Breton, Stefano Bettinazzi
{"title":"研究线粒体膜电位在线粒体父系遗传中的作用","authors":"Ariane Pouliot-Drouin, Thierry Niaison, Sophie Breton, Stefano Bettinazzi","doi":"10.1093/biolinnean/blae050","DOIUrl":null,"url":null,"abstract":"The process of oxidative phosphorylation (OXPHOS) in mitochondria depends on an electrochemical gradient known as the mitochondrial membrane potential (Δψm). Reflecting high functionality, elevated Δψm usually depicts healthy mitochondria and contributes to organelle selection. This study investigates whether mitochondrial properties linked with bioenergetics, such as Δψm, play a role in paternal inheritance of mitochondria. More specifically, the study looks at how sperm Δψm responds to egg chemoattractants in bivalves characterized by distinct mitochondrial inheritance patterns: strict maternal inheritance (SMI) and doubly uniparental inheritance (DUI), the latter displaying sex-specific transmission of paternal mitochondrial DNA. Sperm Δψm was examined in four bivalve species: the blue mussel (Mytilus edulis) and the Manila clam (Ruditapes philippinarum) (DUI), plus the hard clam (Mercenaria mercenaria) and the soft-shell clam (Mya arenaria) (SMI). In the absence of egg chemoattractants, sperm Δψm did not vary between the two groups. However, there was a trend of increase in Δψm following egg detection only in sperm bearing paternally derived mitochondria (DUI). This suggests, along with bioenergetic changes, that Δψm modulation might be a specific property of at least some DUI species, possibly implicated in their unique ability to transmit their mitochondria in a sex-specific fashion.","PeriodicalId":55373,"journal":{"name":"Biological Journal of the Linnean Society","volume":"537 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigating the role of mitochondrial membrane potential in paternal inheritance of mitochondria\",\"authors\":\"Ariane Pouliot-Drouin, Thierry Niaison, Sophie Breton, Stefano Bettinazzi\",\"doi\":\"10.1093/biolinnean/blae050\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The process of oxidative phosphorylation (OXPHOS) in mitochondria depends on an electrochemical gradient known as the mitochondrial membrane potential (Δψm). Reflecting high functionality, elevated Δψm usually depicts healthy mitochondria and contributes to organelle selection. This study investigates whether mitochondrial properties linked with bioenergetics, such as Δψm, play a role in paternal inheritance of mitochondria. More specifically, the study looks at how sperm Δψm responds to egg chemoattractants in bivalves characterized by distinct mitochondrial inheritance patterns: strict maternal inheritance (SMI) and doubly uniparental inheritance (DUI), the latter displaying sex-specific transmission of paternal mitochondrial DNA. Sperm Δψm was examined in four bivalve species: the blue mussel (Mytilus edulis) and the Manila clam (Ruditapes philippinarum) (DUI), plus the hard clam (Mercenaria mercenaria) and the soft-shell clam (Mya arenaria) (SMI). In the absence of egg chemoattractants, sperm Δψm did not vary between the two groups. However, there was a trend of increase in Δψm following egg detection only in sperm bearing paternally derived mitochondria (DUI). This suggests, along with bioenergetic changes, that Δψm modulation might be a specific property of at least some DUI species, possibly implicated in their unique ability to transmit their mitochondria in a sex-specific fashion.\",\"PeriodicalId\":55373,\"journal\":{\"name\":\"Biological Journal of the Linnean Society\",\"volume\":\"537 1\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biological Journal of the Linnean Society\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/biolinnean/blae050\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"EVOLUTIONARY BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biological Journal of the Linnean Society","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/biolinnean/blae050","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"EVOLUTIONARY BIOLOGY","Score":null,"Total":0}
Investigating the role of mitochondrial membrane potential in paternal inheritance of mitochondria
The process of oxidative phosphorylation (OXPHOS) in mitochondria depends on an electrochemical gradient known as the mitochondrial membrane potential (Δψm). Reflecting high functionality, elevated Δψm usually depicts healthy mitochondria and contributes to organelle selection. This study investigates whether mitochondrial properties linked with bioenergetics, such as Δψm, play a role in paternal inheritance of mitochondria. More specifically, the study looks at how sperm Δψm responds to egg chemoattractants in bivalves characterized by distinct mitochondrial inheritance patterns: strict maternal inheritance (SMI) and doubly uniparental inheritance (DUI), the latter displaying sex-specific transmission of paternal mitochondrial DNA. Sperm Δψm was examined in four bivalve species: the blue mussel (Mytilus edulis) and the Manila clam (Ruditapes philippinarum) (DUI), plus the hard clam (Mercenaria mercenaria) and the soft-shell clam (Mya arenaria) (SMI). In the absence of egg chemoattractants, sperm Δψm did not vary between the two groups. However, there was a trend of increase in Δψm following egg detection only in sperm bearing paternally derived mitochondria (DUI). This suggests, along with bioenergetic changes, that Δψm modulation might be a specific property of at least some DUI species, possibly implicated in their unique ability to transmit their mitochondria in a sex-specific fashion.
期刊介绍:
The Biological Journal of the Linnean Society is a direct descendant of the oldest biological journal in the world, which published the epoch-making papers on evolution by Darwin and Wallace. The Journal specializes in evolution in the broadest sense and covers all taxonomic groups in all five kingdoms. It covers all the methods used to study evolution, whether whole-organism or molecular, practical or theoretical.d.