利用深度学习进行星形图像中心定位II.HST/WFPC2 全视场

IF 3.3 3区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS Publications of the Astronomical Society of the Pacific Pub Date : 2024-05-13 DOI:10.1088/1538-3873/ad430c
Dana I. Casetti-Dinescu, Roberto Baena-Gallé, Terrence M. Girard, Alejandro Cervantes-Rovira and Sebastian Todeasa
{"title":"利用深度学习进行星形图像中心定位II.HST/WFPC2 全视场","authors":"Dana I. Casetti-Dinescu, Roberto Baena-Gallé, Terrence M. Girard, Alejandro Cervantes-Rovira and Sebastian Todeasa","doi":"10.1088/1538-3873/ad430c","DOIUrl":null,"url":null,"abstract":"We present an expanded and improved deep-learning (DL) methodology for determining centers of star images on Hubble Space Telescope/Wide-Field Planetary Camera 2 (WFPC2) exposures. Previously, we demonstrated that our DL model can eliminate the pixel-phase bias otherwise present in these undersampled images; however that analysis was limited to the central portion of each detector. In the current work we introduce the inclusion of global positions to account for the point-spread function (PSF) variation across the entire chip and instrumental magnitudes to account for nonlinear effects such as charge transfer efficiency. The DL model is trained using a unique series of WFPC2 observations of globular cluster 47 Tuc, data sets comprising over 600 dithered exposures taken in each of two filters—F555W and F814W. It is found that the PSF variations across each chip correspond to corrections of the order of ∼100 mpix, while magnitude effects are at a level of ∼10 mpix. Importantly, pixel-phase bias is eliminated with the DL model; whereas, with a classic centering algorithm, the amplitude of this bias can be up to ∼40 mpix. Our improved DL model yields star-image centers with uncertainties of 8–10 mpix across the full field of view of WFPC2.","PeriodicalId":20820,"journal":{"name":"Publications of the Astronomical Society of the Pacific","volume":"147 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Star Image Centering with Deep Learning. II. HST/WFPC2 Full Field of View\",\"authors\":\"Dana I. Casetti-Dinescu, Roberto Baena-Gallé, Terrence M. Girard, Alejandro Cervantes-Rovira and Sebastian Todeasa\",\"doi\":\"10.1088/1538-3873/ad430c\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present an expanded and improved deep-learning (DL) methodology for determining centers of star images on Hubble Space Telescope/Wide-Field Planetary Camera 2 (WFPC2) exposures. Previously, we demonstrated that our DL model can eliminate the pixel-phase bias otherwise present in these undersampled images; however that analysis was limited to the central portion of each detector. In the current work we introduce the inclusion of global positions to account for the point-spread function (PSF) variation across the entire chip and instrumental magnitudes to account for nonlinear effects such as charge transfer efficiency. The DL model is trained using a unique series of WFPC2 observations of globular cluster 47 Tuc, data sets comprising over 600 dithered exposures taken in each of two filters—F555W and F814W. It is found that the PSF variations across each chip correspond to corrections of the order of ∼100 mpix, while magnitude effects are at a level of ∼10 mpix. Importantly, pixel-phase bias is eliminated with the DL model; whereas, with a classic centering algorithm, the amplitude of this bias can be up to ∼40 mpix. Our improved DL model yields star-image centers with uncertainties of 8–10 mpix across the full field of view of WFPC2.\",\"PeriodicalId\":20820,\"journal\":{\"name\":\"Publications of the Astronomical Society of the Pacific\",\"volume\":\"147 1\",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Publications of the Astronomical Society of the Pacific\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1538-3873/ad430c\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Publications of the Astronomical Society of the Pacific","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1538-3873/ad430c","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一种扩展和改进的深度学习(DL)方法,用于确定哈勃太空望远镜/宽视场行星相机 2(WFPC2)曝光的恒星图像中心。在此之前,我们已经证明,我们的 DL 模型可以消除这些采样不足图像中原本存在的像素相位偏差;但这一分析仅限于每个探测器的中心部分。在目前的工作中,我们引入了全局位置,以考虑整个芯片上的点扩散函数(PSF)变化,并引入了仪器幅度,以考虑电荷转移效率等非线性效应。我们使用 WFPC2 对球状星团 47 Tuc 的一系列独特观测数据来训练 DL 模型,这些数据集包括在两个滤光片--F555W 和 F814W 中各拍摄的 600 多次抖动曝光。结果发现,每个芯片上的 PSF 变化相当于 ∼100 mpix 的修正量级,而幅度效应则相当于 ∼10 mpix 的水平。重要的是,使用 DL 模型消除了像素相位偏差;而使用传统的居中算法,这种偏差的幅度可达 ∼ 40 mpix。在 WFPC2 的整个视场中,我们改进的 DL 模型产生的星像中心的不确定性为 8-10 mpix。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Star Image Centering with Deep Learning. II. HST/WFPC2 Full Field of View
We present an expanded and improved deep-learning (DL) methodology for determining centers of star images on Hubble Space Telescope/Wide-Field Planetary Camera 2 (WFPC2) exposures. Previously, we demonstrated that our DL model can eliminate the pixel-phase bias otherwise present in these undersampled images; however that analysis was limited to the central portion of each detector. In the current work we introduce the inclusion of global positions to account for the point-spread function (PSF) variation across the entire chip and instrumental magnitudes to account for nonlinear effects such as charge transfer efficiency. The DL model is trained using a unique series of WFPC2 observations of globular cluster 47 Tuc, data sets comprising over 600 dithered exposures taken in each of two filters—F555W and F814W. It is found that the PSF variations across each chip correspond to corrections of the order of ∼100 mpix, while magnitude effects are at a level of ∼10 mpix. Importantly, pixel-phase bias is eliminated with the DL model; whereas, with a classic centering algorithm, the amplitude of this bias can be up to ∼40 mpix. Our improved DL model yields star-image centers with uncertainties of 8–10 mpix across the full field of view of WFPC2.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Publications of the Astronomical Society of the Pacific
Publications of the Astronomical Society of the Pacific 地学天文-天文与天体物理
CiteScore
6.70
自引率
5.70%
发文量
103
审稿时长
4-8 weeks
期刊介绍: The Publications of the Astronomical Society of the Pacific (PASP), the technical journal of the Astronomical Society of the Pacific (ASP), has been published regularly since 1889, and is an integral part of the ASP''s mission to advance the science of astronomy and disseminate astronomical information. The journal provides an outlet for astronomical results of a scientific nature and serves to keep readers in touch with current astronomical research. It contains refereed research and instrumentation articles, invited and contributed reviews, tutorials, and dissertation summaries.
期刊最新文献
The Valuable Long-period Cluster Cepheid KQ Scorpii and other Calibration Candidates A New Parameterization for Finding Solutions for Microlensing Exoplanet Light Curves Multi-amplifier Sensing Charge-coupled Devices for Next Generation Spectroscopy Ejecta Masses in Type Ia Supernovae—Implications for the Progenitor and the Explosion Scenario* * Based in part on observations obtained with the Hobby-Eberly Telescope (HET), which is a joint project of the University of Texas at Austin, the Pennsylvania State University, Ludwig-Maximillians-Universitaet Muenchen, and Georg-August Universitaet Goettingen. The HET is named in honor of its principal benefactors, William P. Hobby and Robert E. Eberly. Physical Properties of Embedded Clusters in ATLASGAL Clumps with H ii Regions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1