改变(Mg0.9Ni0.1O)x/(CoFe2O4)1-x 纳米复合材料的磁性行为

IF 2.1 4区 材料科学 Q3 CHEMISTRY, MULTIDISCIPLINARY Journal of Nanoparticle Research Pub Date : 2024-05-07 DOI:10.1007/s11051-024-06009-z
Majed Sharrouf, R. Awad, Khulud Habanjar
{"title":"改变(Mg0.9Ni0.1O)x/(CoFe2O4)1-x 纳米复合材料的磁性行为","authors":"Majed Sharrouf, R. Awad, Khulud Habanjar","doi":"10.1007/s11051-024-06009-z","DOIUrl":null,"url":null,"abstract":"<p>Nanocomposites of (Mg<sub>0</sub>.<sub>9</sub>Ni<sub>0.1</sub>O)<sub>x</sub>/(CoFe<sub>2</sub>O<sub>4</sub>)<sub>1-<b>x</b></sub>, with 0 <span>\\(\\le\\)</span> x <span>\\(\\le\\)</span> 1 in weight fractions, were synthesized through the co-precipitation method followed by high-speed ball milling. The investigation of the structural, optical, and magnetic properties was conducted for the synthesized samples. X-ray diffraction (XRD) analysis confirmed the formation of CoFe<sub>2</sub>O<sub>4</sub> and Mg<sub>0.9</sub>Ni<sub>0.1</sub>O distinct phases in the nanocomposites without any detectable impurities or minor phases. Transmission electron microscopy (TEM) and high-resolution TEM (HRTEM) revealed the presence of spherical particles in both the individual phases and their nanocomposites. Raman spectroscopy exhibited strong, well-defined modes for CoFe<sub>2</sub>O<sub>4</sub>, indicating its spinel phase formation, while Mg<sub>0</sub>.<sub>9</sub>Ni<sub>0.1</sub>O displayed two broad peaks (G and D bands). X-ray photoelectron spectroscopy (XPS) was utilized to analyze the elemental compositions and oxidation states (Co<sup>2+</sup>, Fe<sup>2+</sup>, Fe<sup>3+</sup>, Mg<sup>2+</sup>, Ni<sup>2+</sup>, and O<sup>2−</sup>). The magnetic measurements revealed the soft ferromagnetic behavior of pure cobalt ferrite and a combination of weak ferromagnetism and paramagnetic behavior at high magnetic fields for pure Mg<sub>0</sub>.<sub>9</sub>Ni<sub>0.1</sub>O.</p>","PeriodicalId":653,"journal":{"name":"Journal of Nanoparticle Research","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Alteration of magnetic behavior of (Mg0.9Ni0.1O)x/(CoFe2O4)1-x nanocomposites\",\"authors\":\"Majed Sharrouf, R. Awad, Khulud Habanjar\",\"doi\":\"10.1007/s11051-024-06009-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Nanocomposites of (Mg<sub>0</sub>.<sub>9</sub>Ni<sub>0.1</sub>O)<sub>x</sub>/(CoFe<sub>2</sub>O<sub>4</sub>)<sub>1-<b>x</b></sub>, with 0 <span>\\\\(\\\\le\\\\)</span> x <span>\\\\(\\\\le\\\\)</span> 1 in weight fractions, were synthesized through the co-precipitation method followed by high-speed ball milling. The investigation of the structural, optical, and magnetic properties was conducted for the synthesized samples. X-ray diffraction (XRD) analysis confirmed the formation of CoFe<sub>2</sub>O<sub>4</sub> and Mg<sub>0.9</sub>Ni<sub>0.1</sub>O distinct phases in the nanocomposites without any detectable impurities or minor phases. Transmission electron microscopy (TEM) and high-resolution TEM (HRTEM) revealed the presence of spherical particles in both the individual phases and their nanocomposites. Raman spectroscopy exhibited strong, well-defined modes for CoFe<sub>2</sub>O<sub>4</sub>, indicating its spinel phase formation, while Mg<sub>0</sub>.<sub>9</sub>Ni<sub>0.1</sub>O displayed two broad peaks (G and D bands). X-ray photoelectron spectroscopy (XPS) was utilized to analyze the elemental compositions and oxidation states (Co<sup>2+</sup>, Fe<sup>2+</sup>, Fe<sup>3+</sup>, Mg<sup>2+</sup>, Ni<sup>2+</sup>, and O<sup>2−</sup>). The magnetic measurements revealed the soft ferromagnetic behavior of pure cobalt ferrite and a combination of weak ferromagnetism and paramagnetic behavior at high magnetic fields for pure Mg<sub>0</sub>.<sub>9</sub>Ni<sub>0.1</sub>O.</p>\",\"PeriodicalId\":653,\"journal\":{\"name\":\"Journal of Nanoparticle Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nanoparticle Research\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1007/s11051-024-06009-z\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanoparticle Research","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s11051-024-06009-z","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

通过共沉淀法和高速球磨法合成了(Mg0.9Ni0.1O)x/(CoFe2O4)1-x的纳米复合材料,其重量分数为0\ (\le) x \ (\le\) 1。对合成样品的结构、光学和磁学性质进行了研究。X 射线衍射(XRD)分析证实,纳米复合材料中形成了 CoFe2O4 和 Mg0.9Ni0.1O 两种不同的相,没有任何可检测到的杂质或次要相。透射电子显微镜(TEM)和高分辨率 TEM(HRTEM)显示,单个相及其纳米复合材料中都存在球形颗粒。拉曼光谱显示 CoFe2O4 具有强而清晰的模式,表明其尖晶石相的形成,而 Mg0.9Ni0.1O 则显示出两个宽峰(G 带和 D 带)。利用 X 射线光电子能谱(XPS)分析了元素组成和氧化态(Co2+、Fe2+、Fe3+、Mg2+、Ni2+ 和 O2-)。磁性测量结果表明,纯钴铁氧体具有软铁磁性,而纯 Mg0.9Ni0.1O 在高磁场下具有弱铁磁性和顺磁性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Alteration of magnetic behavior of (Mg0.9Ni0.1O)x/(CoFe2O4)1-x nanocomposites

Nanocomposites of (Mg0.9Ni0.1O)x/(CoFe2O4)1-x, with 0 \(\le\) x \(\le\) 1 in weight fractions, were synthesized through the co-precipitation method followed by high-speed ball milling. The investigation of the structural, optical, and magnetic properties was conducted for the synthesized samples. X-ray diffraction (XRD) analysis confirmed the formation of CoFe2O4 and Mg0.9Ni0.1O distinct phases in the nanocomposites without any detectable impurities or minor phases. Transmission electron microscopy (TEM) and high-resolution TEM (HRTEM) revealed the presence of spherical particles in both the individual phases and their nanocomposites. Raman spectroscopy exhibited strong, well-defined modes for CoFe2O4, indicating its spinel phase formation, while Mg0.9Ni0.1O displayed two broad peaks (G and D bands). X-ray photoelectron spectroscopy (XPS) was utilized to analyze the elemental compositions and oxidation states (Co2+, Fe2+, Fe3+, Mg2+, Ni2+, and O2−). The magnetic measurements revealed the soft ferromagnetic behavior of pure cobalt ferrite and a combination of weak ferromagnetism and paramagnetic behavior at high magnetic fields for pure Mg0.9Ni0.1O.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Nanoparticle Research
Journal of Nanoparticle Research 工程技术-材料科学:综合
CiteScore
4.40
自引率
4.00%
发文量
198
审稿时长
3.9 months
期刊介绍: The objective of the Journal of Nanoparticle Research is to disseminate knowledge of the physical, chemical and biological phenomena and processes in structures that have at least one lengthscale ranging from molecular to approximately 100 nm (or submicron in some situations), and exhibit improved and novel properties that are a direct result of their small size. Nanoparticle research is a key component of nanoscience, nanoengineering and nanotechnology. The focus of the Journal is on the specific concepts, properties, phenomena, and processes related to particles, tubes, layers, macromolecules, clusters and other finite structures of the nanoscale size range. Synthesis, assembly, transport, reactivity, and stability of such structures are considered. Development of in-situ and ex-situ instrumentation for characterization of nanoparticles and their interfaces should be based on new principles for probing properties and phenomena not well understood at the nanometer scale. Modeling and simulation may include atom-based quantum mechanics; molecular dynamics; single-particle, multi-body and continuum based models; fractals; other methods suitable for modeling particle synthesis, assembling and interaction processes. Realization and application of systems, structures and devices with novel functions obtained via precursor nanoparticles is emphasized. Approaches may include gas-, liquid-, solid-, and vacuum-based processes, size reduction, chemical- and bio-self assembly. Contributions include utilization of nanoparticle systems for enhancing a phenomenon or process and particle assembling into hierarchical structures, as well as formulation and the administration of drugs. Synergistic approaches originating from different disciplines and technologies, and interaction between the research providers and users in this field, are encouraged.
期刊最新文献
The probability of application of various nanostructures of boron nitride as an anode material for Ca-ion battery: a DFT study First principle study on the interactions of Au(Ag2S)n (n = 1–8) with Hg0 and Hg2+ Synthesis of PbS colloidal quantum dots in the presence of N, Nʹ-diphenylthiourea: influence of chain length of the coordinating amine The transfection efficiency of newly developed calcium phosphate nanoparticles in reprogramming of fibroblast cells Removal of dye AG25 by a hybrid process of plasma-activated water and cobalt nanoferrite photocatalysis: part I
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1