K B Oganesyan, K Dzierzega, A H Gevorgyan, P Kopcansky
{"title":"用于等离子体局部诊断的不同调谐的受激磁光技术","authors":"K B Oganesyan, K Dzierzega, A H Gevorgyan, P Kopcansky","doi":"10.1088/1612-202x/ad45da","DOIUrl":null,"url":null,"abstract":"The polarization plane stimulated rotation angle of a probe signal in an intense laser field in plasma is calculated for arbitrary detunings of intense and weak laser waves compared with the resonant transition frequency of the medium. Estimates of the residual gas local density in a cesium plasma have been found based on the Faraday, Cotton–Mouton effects and on the effect of stimulated rotation of the polarization plane of the probe signal in an intense laser field. It is shown that the rotation in the medium has a complex structure consisting of the sum of only the influence of the magnetic field, only the influence of the intense laser field and the interfering part of the magnetic and intense laser fields.","PeriodicalId":17940,"journal":{"name":"Laser Physics Letters","volume":"37 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stimulated magneto-optics with different detunings for plasma local diagnostics\",\"authors\":\"K B Oganesyan, K Dzierzega, A H Gevorgyan, P Kopcansky\",\"doi\":\"10.1088/1612-202x/ad45da\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The polarization plane stimulated rotation angle of a probe signal in an intense laser field in plasma is calculated for arbitrary detunings of intense and weak laser waves compared with the resonant transition frequency of the medium. Estimates of the residual gas local density in a cesium plasma have been found based on the Faraday, Cotton–Mouton effects and on the effect of stimulated rotation of the polarization plane of the probe signal in an intense laser field. It is shown that the rotation in the medium has a complex structure consisting of the sum of only the influence of the magnetic field, only the influence of the intense laser field and the interfering part of the magnetic and intense laser fields.\",\"PeriodicalId\":17940,\"journal\":{\"name\":\"Laser Physics Letters\",\"volume\":\"37 1\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Laser Physics Letters\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1612-202x/ad45da\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Laser Physics Letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1612-202x/ad45da","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OPTICS","Score":null,"Total":0}
Stimulated magneto-optics with different detunings for plasma local diagnostics
The polarization plane stimulated rotation angle of a probe signal in an intense laser field in plasma is calculated for arbitrary detunings of intense and weak laser waves compared with the resonant transition frequency of the medium. Estimates of the residual gas local density in a cesium plasma have been found based on the Faraday, Cotton–Mouton effects and on the effect of stimulated rotation of the polarization plane of the probe signal in an intense laser field. It is shown that the rotation in the medium has a complex structure consisting of the sum of only the influence of the magnetic field, only the influence of the intense laser field and the interfering part of the magnetic and intense laser fields.
期刊介绍:
Laser Physics Letters encompasses all aspects of laser physics sciences including, inter alia, spectroscopy, quantum electronics, quantum optics, quantum electrodynamics, nonlinear optics, atom optics, quantum computation, quantum information processing and storage, fiber optics and their applications in chemistry, biology, engineering and medicine.
The full list of subject areas covered is as follows:
-physics of lasers-
fibre optics and fibre lasers-
quantum optics and quantum information science-
ultrafast optics and strong-field physics-
nonlinear optics-
physics of cold trapped atoms-
laser methods in chemistry, biology, medicine and ecology-
laser spectroscopy-
novel laser materials and lasers-
optics of nanomaterials-
interaction of laser radiation with matter-
laser interaction with solids-
photonics