通过绿色声化学合成实现新型三维 Co(II)金属有机框架(Co-MOF)的形态可控:晶体学、Hirshfeld 表面分析

IF 2.1 4区 材料科学 Q3 CHEMISTRY, MULTIDISCIPLINARY Journal of Nanoparticle Research Pub Date : 2024-05-09 DOI:10.1007/s11051-024-05991-8
Seyedeh Elahe Hosseini, Mohammad Kazem Mohammadi, Payam Hayati, Haman Tavakkoli, Ayeh Rayatzadeh
{"title":"通过绿色声化学合成实现新型三维 Co(II)金属有机框架(Co-MOF)的形态可控:晶体学、Hirshfeld 表面分析","authors":"Seyedeh Elahe Hosseini, Mohammad Kazem Mohammadi, Payam Hayati, Haman Tavakkoli, Ayeh Rayatzadeh","doi":"10.1007/s11051-024-05991-8","DOIUrl":null,"url":null,"abstract":"<p>Nanostructures of a cobalt(II) metal–organic framework (MOF), denoted as 4,4′,4″-s-triazin-1,3,5-triyltri-p-aminobenzoate (TATAB) [[Co<sub>2</sub>(TATAB)(OH)(H<sub>2</sub>O)<sub>2</sub>].H<sub>2</sub>O.0.6O]<sub>n</sub> {1<b>}</b>, were successfully synthesized using two different experimental techniques: solvothermal and sonochemical strategies. Remarkably, both methods yielded an identical crystal structure. Various characterization techniques, including powder X-ray diffraction (PXRD), scanning electron microscopy (SEM), and Fourier transform infrared spectroscopy (FT-IR), were employed to analyze all the compounds. Compound contains cobalt ions (Co<sup>2+</sup>) that were determined to be six-coordinated through the analysis of single-crystal X-ray diffraction (SCXRD). The effect of various factors such as temperature, reaction time, reactant concentration, and ultrasonic energy on the synthesis and final morphology of the compounds obtained by sonochemical method was investigated. Finally, Hirshfeld surface analysis (HAS) of compound was conducted. The molecular descriptors obtained at the BLYP/6–311 + + g (d, p) level of theory framework indicate a unique electronic structure for this complex, characterized by low chemical hardness (<i>η</i> = 1.702 eV), high electrophilicity (<i>ω</i> = 3.637 eV), and a narrow HOMO–LUMO gap (1.55 eV). These descriptors suggest that this complex can be considered a favorable nucleophile in interactions with proteins.</p>","PeriodicalId":653,"journal":{"name":"Journal of Nanoparticle Research","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Controlled morphology of a new 3D Co(II) metal–organic framework (Co-MOF) via green sonochemical synthesis: crystallography, Hirshfeld surface analysis\",\"authors\":\"Seyedeh Elahe Hosseini, Mohammad Kazem Mohammadi, Payam Hayati, Haman Tavakkoli, Ayeh Rayatzadeh\",\"doi\":\"10.1007/s11051-024-05991-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Nanostructures of a cobalt(II) metal–organic framework (MOF), denoted as 4,4′,4″-s-triazin-1,3,5-triyltri-p-aminobenzoate (TATAB) [[Co<sub>2</sub>(TATAB)(OH)(H<sub>2</sub>O)<sub>2</sub>].H<sub>2</sub>O.0.6O]<sub>n</sub> {1<b>}</b>, were successfully synthesized using two different experimental techniques: solvothermal and sonochemical strategies. Remarkably, both methods yielded an identical crystal structure. Various characterization techniques, including powder X-ray diffraction (PXRD), scanning electron microscopy (SEM), and Fourier transform infrared spectroscopy (FT-IR), were employed to analyze all the compounds. Compound contains cobalt ions (Co<sup>2+</sup>) that were determined to be six-coordinated through the analysis of single-crystal X-ray diffraction (SCXRD). The effect of various factors such as temperature, reaction time, reactant concentration, and ultrasonic energy on the synthesis and final morphology of the compounds obtained by sonochemical method was investigated. Finally, Hirshfeld surface analysis (HAS) of compound was conducted. The molecular descriptors obtained at the BLYP/6–311 + + g (d, p) level of theory framework indicate a unique electronic structure for this complex, characterized by low chemical hardness (<i>η</i> = 1.702 eV), high electrophilicity (<i>ω</i> = 3.637 eV), and a narrow HOMO–LUMO gap (1.55 eV). These descriptors suggest that this complex can be considered a favorable nucleophile in interactions with proteins.</p>\",\"PeriodicalId\":653,\"journal\":{\"name\":\"Journal of Nanoparticle Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nanoparticle Research\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1007/s11051-024-05991-8\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanoparticle Research","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s11051-024-05991-8","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

利用两种不同的实验技术:溶热法和声化学法,成功合成了 4,4′,4″-s-三嗪-1,3,5-三基对氨基苯甲酸盐(TATAB)[[Co2(TATAB)(OH)(H2O)2].H2O.0.6O]n {1}的钴(II)金属有机框架(MOF)纳米结构。值得注意的是,这两种方法都得到了相同的晶体结构。对所有化合物都采用了各种表征技术,包括粉末 X 射线衍射(PXRD)、扫描电子显微镜(SEM)和傅立叶变换红外光谱(FT-IR)。通过单晶 X 射线衍射(SCXRD)分析,确定化合物含有六配位的钴离子(Co2+)。研究了温度、反应时间、反应物浓度和超声波能量等各种因素对超声化学法合成的化合物及其最终形态的影响。最后,对化合物进行了 Hirshfeld 表面分析(HAS)。在 BLYP/6-311 + + g (d, p) 水平理论框架下获得的分子描述符表明,该复合物具有独特的电子结构,其特点是低化学硬度(η = 1.702 eV)、高亲电性(ω = 3.637 eV)和窄 HOMO-LUMO 间隙(1.55 eV)。这些描述表明,这种复合物在与蛋白质相互作用时可被视为一种有利的亲核物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Controlled morphology of a new 3D Co(II) metal–organic framework (Co-MOF) via green sonochemical synthesis: crystallography, Hirshfeld surface analysis

Nanostructures of a cobalt(II) metal–organic framework (MOF), denoted as 4,4′,4″-s-triazin-1,3,5-triyltri-p-aminobenzoate (TATAB) [[Co2(TATAB)(OH)(H2O)2].H2O.0.6O]n {1}, were successfully synthesized using two different experimental techniques: solvothermal and sonochemical strategies. Remarkably, both methods yielded an identical crystal structure. Various characterization techniques, including powder X-ray diffraction (PXRD), scanning electron microscopy (SEM), and Fourier transform infrared spectroscopy (FT-IR), were employed to analyze all the compounds. Compound contains cobalt ions (Co2+) that were determined to be six-coordinated through the analysis of single-crystal X-ray diffraction (SCXRD). The effect of various factors such as temperature, reaction time, reactant concentration, and ultrasonic energy on the synthesis and final morphology of the compounds obtained by sonochemical method was investigated. Finally, Hirshfeld surface analysis (HAS) of compound was conducted. The molecular descriptors obtained at the BLYP/6–311 + + g (d, p) level of theory framework indicate a unique electronic structure for this complex, characterized by low chemical hardness (η = 1.702 eV), high electrophilicity (ω = 3.637 eV), and a narrow HOMO–LUMO gap (1.55 eV). These descriptors suggest that this complex can be considered a favorable nucleophile in interactions with proteins.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Nanoparticle Research
Journal of Nanoparticle Research 工程技术-材料科学:综合
CiteScore
4.40
自引率
4.00%
发文量
198
审稿时长
3.9 months
期刊介绍: The objective of the Journal of Nanoparticle Research is to disseminate knowledge of the physical, chemical and biological phenomena and processes in structures that have at least one lengthscale ranging from molecular to approximately 100 nm (or submicron in some situations), and exhibit improved and novel properties that are a direct result of their small size. Nanoparticle research is a key component of nanoscience, nanoengineering and nanotechnology. The focus of the Journal is on the specific concepts, properties, phenomena, and processes related to particles, tubes, layers, macromolecules, clusters and other finite structures of the nanoscale size range. Synthesis, assembly, transport, reactivity, and stability of such structures are considered. Development of in-situ and ex-situ instrumentation for characterization of nanoparticles and their interfaces should be based on new principles for probing properties and phenomena not well understood at the nanometer scale. Modeling and simulation may include atom-based quantum mechanics; molecular dynamics; single-particle, multi-body and continuum based models; fractals; other methods suitable for modeling particle synthesis, assembling and interaction processes. Realization and application of systems, structures and devices with novel functions obtained via precursor nanoparticles is emphasized. Approaches may include gas-, liquid-, solid-, and vacuum-based processes, size reduction, chemical- and bio-self assembly. Contributions include utilization of nanoparticle systems for enhancing a phenomenon or process and particle assembling into hierarchical structures, as well as formulation and the administration of drugs. Synergistic approaches originating from different disciplines and technologies, and interaction between the research providers and users in this field, are encouraged.
期刊最新文献
The probability of application of various nanostructures of boron nitride as an anode material for Ca-ion battery: a DFT study First principle study on the interactions of Au(Ag2S)n (n = 1–8) with Hg0 and Hg2+ Synthesis of PbS colloidal quantum dots in the presence of N, Nʹ-diphenylthiourea: influence of chain length of the coordinating amine The transfection efficiency of newly developed calcium phosphate nanoparticles in reprogramming of fibroblast cells Removal of dye AG25 by a hybrid process of plasma-activated water and cobalt nanoferrite photocatalysis: part I
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1