优化二氧化钛纳米管的水热合成:多勒特方法和可取函数方法

IF 2.1 4区 材料科学 Q3 CHEMISTRY, MULTIDISCIPLINARY Journal of Nanoparticle Research Pub Date : 2024-05-14 DOI:10.1007/s11051-024-06014-2
Fernanda Uczay, Carlos Eduardo Maduro de Campos, Tatiane de Andrade Maranhão, Cristiane Luisa Jost, Daniela Zambelli Mezalira
{"title":"优化二氧化钛纳米管的水热合成:多勒特方法和可取函数方法","authors":"Fernanda Uczay, Carlos Eduardo Maduro de Campos, Tatiane de Andrade Maranhão, Cristiane Luisa Jost, Daniela Zambelli Mezalira","doi":"10.1007/s11051-024-06014-2","DOIUrl":null,"url":null,"abstract":"<p>Design of experiments is a powerful planning technique that optimizes processes and reduces experimental variability. This research aims to optimize the hydrothermal synthesis of TiO<sub>2</sub> nanotubes with a high specific surface area (SSA). A 2<sup>2</sup> factorial design was applied to investigate the influence of temperature and time on nanotube formation, achieving SSA above 350 m<sup>2</sup> g<sup>−1</sup>. A Doehlert design combining SSA with morphology reveals closely related responses and a defined maximum surface. Microscopy shows that nanotube formation is favored at lower temperatures and longer treatment times, with the optimal condition at 120 °C for 36 h. Higher temperatures yield cauliflower-like nanostructures and provide insight into how synthesis conditions affect the morphology and nanoparticle properties. XRD and Raman spectroscopy analysis revealed that, although the anatase phase played a vital role in nanotube formation, the materials exhibited a combination of crystalline phases, including the discovery of an unidentified phase.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>\n","PeriodicalId":653,"journal":{"name":"Journal of Nanoparticle Research","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimizing hydrothermal synthesis of titanium dioxide nanotubes: Doehlert method and desirability function approach\",\"authors\":\"Fernanda Uczay, Carlos Eduardo Maduro de Campos, Tatiane de Andrade Maranhão, Cristiane Luisa Jost, Daniela Zambelli Mezalira\",\"doi\":\"10.1007/s11051-024-06014-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Design of experiments is a powerful planning technique that optimizes processes and reduces experimental variability. This research aims to optimize the hydrothermal synthesis of TiO<sub>2</sub> nanotubes with a high specific surface area (SSA). A 2<sup>2</sup> factorial design was applied to investigate the influence of temperature and time on nanotube formation, achieving SSA above 350 m<sup>2</sup> g<sup>−1</sup>. A Doehlert design combining SSA with morphology reveals closely related responses and a defined maximum surface. Microscopy shows that nanotube formation is favored at lower temperatures and longer treatment times, with the optimal condition at 120 °C for 36 h. Higher temperatures yield cauliflower-like nanostructures and provide insight into how synthesis conditions affect the morphology and nanoparticle properties. XRD and Raman spectroscopy analysis revealed that, although the anatase phase played a vital role in nanotube formation, the materials exhibited a combination of crystalline phases, including the discovery of an unidentified phase.</p><h3 data-test=\\\"abstract-sub-heading\\\">Graphical Abstract</h3>\\n\",\"PeriodicalId\":653,\"journal\":{\"name\":\"Journal of Nanoparticle Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nanoparticle Research\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1007/s11051-024-06014-2\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanoparticle Research","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s11051-024-06014-2","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

实验设计是一种功能强大的规划技术,可优化工艺流程并减少实验变异性。本研究旨在优化高比表面积(SSA)TiO2 纳米管的水热合成。采用 22 因式设计来研究温度和时间对纳米管形成的影响,从而实现 350 m2 g-1 以上的 SSA。将 SSA 与形态相结合的 Doehlert 设计揭示了密切相关的反应和确定的最大表面。显微镜观察表明,在较低温度和较长的处理时间下有利于纳米管的形成,最佳条件是在 120 °C 下处理 36 小时。XRD 和拉曼光谱分析表明,虽然锐钛矿相在纳米管的形成中起着重要作用,但材料呈现出多种结晶相,包括发现了一种不明相。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optimizing hydrothermal synthesis of titanium dioxide nanotubes: Doehlert method and desirability function approach

Design of experiments is a powerful planning technique that optimizes processes and reduces experimental variability. This research aims to optimize the hydrothermal synthesis of TiO2 nanotubes with a high specific surface area (SSA). A 22 factorial design was applied to investigate the influence of temperature and time on nanotube formation, achieving SSA above 350 m2 g−1. A Doehlert design combining SSA with morphology reveals closely related responses and a defined maximum surface. Microscopy shows that nanotube formation is favored at lower temperatures and longer treatment times, with the optimal condition at 120 °C for 36 h. Higher temperatures yield cauliflower-like nanostructures and provide insight into how synthesis conditions affect the morphology and nanoparticle properties. XRD and Raman spectroscopy analysis revealed that, although the anatase phase played a vital role in nanotube formation, the materials exhibited a combination of crystalline phases, including the discovery of an unidentified phase.

Graphical Abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Nanoparticle Research
Journal of Nanoparticle Research 工程技术-材料科学:综合
CiteScore
4.40
自引率
4.00%
发文量
198
审稿时长
3.9 months
期刊介绍: The objective of the Journal of Nanoparticle Research is to disseminate knowledge of the physical, chemical and biological phenomena and processes in structures that have at least one lengthscale ranging from molecular to approximately 100 nm (or submicron in some situations), and exhibit improved and novel properties that are a direct result of their small size. Nanoparticle research is a key component of nanoscience, nanoengineering and nanotechnology. The focus of the Journal is on the specific concepts, properties, phenomena, and processes related to particles, tubes, layers, macromolecules, clusters and other finite structures of the nanoscale size range. Synthesis, assembly, transport, reactivity, and stability of such structures are considered. Development of in-situ and ex-situ instrumentation for characterization of nanoparticles and their interfaces should be based on new principles for probing properties and phenomena not well understood at the nanometer scale. Modeling and simulation may include atom-based quantum mechanics; molecular dynamics; single-particle, multi-body and continuum based models; fractals; other methods suitable for modeling particle synthesis, assembling and interaction processes. Realization and application of systems, structures and devices with novel functions obtained via precursor nanoparticles is emphasized. Approaches may include gas-, liquid-, solid-, and vacuum-based processes, size reduction, chemical- and bio-self assembly. Contributions include utilization of nanoparticle systems for enhancing a phenomenon or process and particle assembling into hierarchical structures, as well as formulation and the administration of drugs. Synergistic approaches originating from different disciplines and technologies, and interaction between the research providers and users in this field, are encouraged.
期刊最新文献
The probability of application of various nanostructures of boron nitride as an anode material for Ca-ion battery: a DFT study First principle study on the interactions of Au(Ag2S)n (n = 1–8) with Hg0 and Hg2+ Synthesis of PbS colloidal quantum dots in the presence of N, Nʹ-diphenylthiourea: influence of chain length of the coordinating amine The transfection efficiency of newly developed calcium phosphate nanoparticles in reprogramming of fibroblast cells Removal of dye AG25 by a hybrid process of plasma-activated water and cobalt nanoferrite photocatalysis: part I
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1