{"title":"利用模拟方法对输送机上绿色颗粒粒度分布测量的误差分析","authors":"Shuyi Zhou, Xiaoyan Liu","doi":"10.2355/isijinternational.isijint-2023-459","DOIUrl":null,"url":null,"abstract":"</p><p>3D vision technologies have been widely used in metallurgy industry to measure particle size distribution (PSD) of green pellets on conveyor. However, 3D camera only captures the point clouds of surface pellets, and algorithms measure the surface PSD. To what extent the measured surface PSD can reflect whole PSD is a question that hasn't been answered yet. In the present work, a simulation method is proposed to analyze the PSD measurement error of green pellets. First, the motion process of green pellets on conveyor is simulated by discrete element method to obtain PSD of whole pellets; then, a transformation method is proposed to generate point clouds of simulated surface pellets, and region growing-based method is adopted to measure the PSD of surface pellets; finally, the PSD measuring error can be obtained by comparing surface PSD and whole PSD of pellets. Error analysis of green pellet size distribution measurement on conveyors is conducted, in aspects of camera location, patch number of point clouds, thickness as well as size distribution of pellet bed. Results illustrate that although the PSD measuring error (up to 12.3%) cannot be neglected when camera is installed above conveyor, it can be effectively reduced by increasing the patch number of captured point clouds (reduced by more than 7.4%) or installing camera near discharge of conveyor (reduced to less than 3.1%).</p>\n<p></p>","PeriodicalId":14619,"journal":{"name":"Isij International","volume":"160 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Error analysis of green pellet size distribution measurement on conveyors using simulation method\",\"authors\":\"Shuyi Zhou, Xiaoyan Liu\",\"doi\":\"10.2355/isijinternational.isijint-2023-459\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"</p><p>3D vision technologies have been widely used in metallurgy industry to measure particle size distribution (PSD) of green pellets on conveyor. However, 3D camera only captures the point clouds of surface pellets, and algorithms measure the surface PSD. To what extent the measured surface PSD can reflect whole PSD is a question that hasn't been answered yet. In the present work, a simulation method is proposed to analyze the PSD measurement error of green pellets. First, the motion process of green pellets on conveyor is simulated by discrete element method to obtain PSD of whole pellets; then, a transformation method is proposed to generate point clouds of simulated surface pellets, and region growing-based method is adopted to measure the PSD of surface pellets; finally, the PSD measuring error can be obtained by comparing surface PSD and whole PSD of pellets. Error analysis of green pellet size distribution measurement on conveyors is conducted, in aspects of camera location, patch number of point clouds, thickness as well as size distribution of pellet bed. Results illustrate that although the PSD measuring error (up to 12.3%) cannot be neglected when camera is installed above conveyor, it can be effectively reduced by increasing the patch number of captured point clouds (reduced by more than 7.4%) or installing camera near discharge of conveyor (reduced to less than 3.1%).</p>\\n<p></p>\",\"PeriodicalId\":14619,\"journal\":{\"name\":\"Isij International\",\"volume\":\"160 1\",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Isij International\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.2355/isijinternational.isijint-2023-459\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Isij International","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.2355/isijinternational.isijint-2023-459","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
Error analysis of green pellet size distribution measurement on conveyors using simulation method
3D vision technologies have been widely used in metallurgy industry to measure particle size distribution (PSD) of green pellets on conveyor. However, 3D camera only captures the point clouds of surface pellets, and algorithms measure the surface PSD. To what extent the measured surface PSD can reflect whole PSD is a question that hasn't been answered yet. In the present work, a simulation method is proposed to analyze the PSD measurement error of green pellets. First, the motion process of green pellets on conveyor is simulated by discrete element method to obtain PSD of whole pellets; then, a transformation method is proposed to generate point clouds of simulated surface pellets, and region growing-based method is adopted to measure the PSD of surface pellets; finally, the PSD measuring error can be obtained by comparing surface PSD and whole PSD of pellets. Error analysis of green pellet size distribution measurement on conveyors is conducted, in aspects of camera location, patch number of point clouds, thickness as well as size distribution of pellet bed. Results illustrate that although the PSD measuring error (up to 12.3%) cannot be neglected when camera is installed above conveyor, it can be effectively reduced by increasing the patch number of captured point clouds (reduced by more than 7.4%) or installing camera near discharge of conveyor (reduced to less than 3.1%).
期刊介绍:
The journal provides an international medium for the publication of fundamental and technological aspects of the properties, structure, characterization and modeling, processing, fabrication, and environmental issues of iron and steel, along with related engineering materials.